Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0278134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656835

RESUMO

We previously reported that SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiomes (bacteria, archaea and commensal respiratory viruses) with inclusion of pathobionts. This study aimed to assess the possible changes in the abundance and diversity of resident mycobiome in the nasopharyngeal tract (NT) of humans due to SARS-CoV-2 infections. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 = 8, Recovered = 7, and Healthy = 7) were collected for RNA-sequencing followed by taxonomic profiling of mycobiome. Our analyses indicate that SARS-CoV-2 infection significantly increased (p < 0.05, Wilcoxon test) the population and diversity of fungi in the NT with inclusion of a high proportion of opportunistic pathogens. We detected 863 fungal species including 533, 445, and 188 species in COVID-19, Recovered, and Healthy individuals, respectively that indicate a distinct mycobiome dysbiosis due to the SARS-CoV-2 infection. Remarkably, 37% of the fungal species were exclusively associated with SARS-CoV-2 infection, where S. cerevisiae (88.62%) and Phaffia rhodozyma (10.30%) were two top abundant species. Likewise, Recovered humans NT samples were predominated by Aspergillus penicillioides (36.64%), A. keveii (23.36%), A. oryzae (10.05%) and A. pseudoglaucus (4.42%). Conversely, Nannochloropsis oceanica (47.93%), Saccharomyces pastorianus (34.42%), and S. cerevisiae (2.80%) were the top abundant fungal species in Healthy controls nasal swabs. Importantly, 16% commensal fungal species found in the Healthy controls were not detected in either COVID-19 patients or when they were cured from COVID-19 (Recovered). We also detected several altered metabolic pathways correlated with the dysbiosis of fungal mycobiota in COVID-19 patients. Our results suggest that SARS-CoV-2 infection causes significant dysbiosis of mycobiome and related metabolic functions possibly play a determining role in the progression of SARS-CoV-2 pathogenesis. These findings might be helpful for developing mycobiome-based diagnostics, and also devising appropriate therapeutic regimens including antifungal drugs for prevention and control of concurrent fungal coinfections in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Saccharomyces cerevisiae/genética , SARS-CoV-2/genética , Disbiose , Nasofaringe , Perfilação da Expressão Gênica
2.
Front Immunol ; 13: 918692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059456

RESUMO

The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created an urgent global situation. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability and disease comorbidities. The pandemic continues to spread worldwide, despite intense efforts to develop multiple vaccines and therapeutic options against COVID-19. However, the precise role of SARS-CoV-2 in the pathophysiology of the nasopharyngeal tract (NT) is still unfathomable. This study utilized machine learning approaches to analyze 22 RNA-seq data from COVID-19 patients (n = 8), recovered individuals (n = 7), and healthy individuals (n = 7) to find disease-related differentially expressed genes (DEGs). We compared dysregulated DEGs to detect critical pathways and gene ontology (GO) connected to COVID-19 comorbidities. We found 1960 and 153 DEG signatures in COVID-19 patients and recovered individuals compared to healthy controls. In COVID-19 patients, the DEG-miRNA, and DEG-transcription factors (TFs) interactions network analysis revealed that E2F1, MAX, EGR1, YY1, and SRF were the highly expressed TFs, whereas hsa-miR-19b, hsa-miR-495, hsa-miR-340, hsa-miR-101, and hsa-miR-19a were the overexpressed miRNAs. Three chemical agents (Valproic Acid, Alfatoxin B1, and Cyclosporine) were abundant in COVID-19 patients and recovered individuals. Mental retardation, mental deficit, intellectual disability, muscle hypotonia, micrognathism, and cleft palate were the significant diseases associated with COVID-19 by sharing DEGs. Finally, the detected DEGs mediated by TFs and miRNA expression indicated that SARS-CoV-2 infection might contribute to various comorbidities. Our results provide the common DEGs between COVID-19 patients and recovered humans, which suggests some crucial insights into the complex interplay between COVID-19 progression and the recovery stage, and offer some suggestions on therapeutic target identification in COVID-19 caused by the SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , MicroRNAs , Biomarcadores , COVID-19/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Aprendizado de Máquina , MicroRNAs/genética , MicroRNAs/metabolismo , Pandemias , SARS-CoV-2
3.
Microbiol Resour Announc ; 10(48): e0084921, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854726

RESUMO

We report the near-complete genome sequence and phylogenetic analysis of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) strain. This variant is associated with increased transmission and immune evasion.

4.
Microbiol Resour Announc ; 10(27): e0052421, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236224

RESUMO

This study reports the coding-complete genome sequence, with variant identifications and phylogenetic analysis, of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) P.1 variant (20J/501Y.V3), obtained from an oropharyngeal swab specimen from a female Bangladeshi patient diagnosed with coronavirus disease 2019 (COVID-19) with no travel history.

5.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32972934

RESUMO

We report the sequencing of three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Bangladesh. We have identified a unique mutation (NSP2_V480I) in one of the sequenced genomes (isolate hCoV-19/Bangladesh/BCSIR-NILMRC-006/2020) compared to the sequences available in the Global Initiative on Sharing All Influenza Data (GISAID) database. The data from this analysis will contribute to advancing our understanding of the epidemiology of SARS-CoV-2 in Bangladesh as well as worldwide at the molecular level and will identify potential new targets for interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA