Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612856

RESUMO

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Animais , Camundongos , Resveratrol/farmacologia , Neuroproteção , Administração Intranasal , Encefalomielite Autoimune Experimental/tratamento farmacológico
2.
Gene Ther ; 28(5): 256-264, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33589779

RESUMO

SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model. We hypothesized that AAV-mediated overexpression of SIRT1 in RGCs reduces RGC loss, thereby preserving visual function. Cohorts of C57Bl/6J mice received intravitreal injection of experimental or control AAVs using either a ganglion cell promoter or a constitutive promoter and ONC was performed. Visual function was examined by optokinetic response (OKR) for 7 days following ONC. Retina and optic nerves were harvested to investigate RGC survival by immunolabeling. The AAV7m8-SNCG.SIRT1 vector showed 44% transduction efficiency for RGCs compared with 25% (P > 0.05) by AAV2-CAG.SIRT1, and AAV7m8-SNCG.SIRT1 drives expression selectively in RGCs in vivo. Animals modeling ONC demonstrated reduced visual acuity compared to controls. Intravitreal delivery of AAV7m8-SNCG.SIRT1 mediated significant preservation of the OKR and RGC survival compared to AAV7m8-SNCG.eGFP controls, an effect not seen with the AAV2 vector. RGC-selective expression of SIRT1 offers a targeted therapy for an animal model with significant ganglion cell loss. Over-expression of SIRT1 through AAV-mediated gene transduction suggests a RGC selective component of neuro-protection using the ONC model. This study expands our understanding of SIRT1 mediated neuroprotection in the context of compressive or traumatic optic neuropathy, making it a strong therapeutic candidate for testing in all optic neuropathies.


Assuntos
Traumatismos do Nervo Óptico , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Compressão Nervosa , Nervo Óptico , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina , Sirtuína 1/genética
3.
J Neuroophthalmol ; 39(2): 191-199, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30829880

RESUMO

INTRODUCTION: Previous studies have shown that intranasally administered ST266, a novel biological secretome of amnion-derived multipotent progenitor cells containing multiple growth factors and anti-inflammatory cytokines, attenuated visual dysfunction and prevented retinal ganglion cell (RGC) loss in experimental optic neuritis. Long-term effects and dose escalation studies examined here have not been reported previously. METHODS: Optic neuritis was induced in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE). EAE and control mice were treated once or twice daily with intranasal placebo/vehicle or ST266 beginning after onset of optic neuritis for either 15 days or continuously until sacrifice. Visual function was assessed by optokinetic responses (OKRs). RGC survival and optic nerve inflammation and demyelination were measured. RESULTS: Both once and twice daily continuous intranasal ST266 treatment from disease onset to 56 days after EAE induction significantly increased OKR scores, decreased RGC loss, and reduced optic nerve inflammation and demyelination compared with placebo (saline, nonspecific protein solution, or cell culture media)-treated EAE mice. ST266 treatment given for just 15 days after disease onset, then discontinued, only delayed OKR decreases, and had limited effects on RGC survival and optic nerve inflammation 56 days after disease induction. CONCLUSIONS: ST266 is a potential neuroprotective therapy to prevent RGC damage, and intranasal delivery warrants further study as a novel mechanism to deliver protein therapies for optic neuropathies. Results suggest that once daily ST266 treatment is sufficient to sustain maximal benefits and demonstrate that neuroprotective effects promoted by ST266 are specific to the combination of factors present in this complex biologic therapy.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Neurite Óptica/prevenção & controle , Doenças Retinianas/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Administração Intranasal , Âmnio , Animais , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Multipotentes/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Nistagmo Optocinético/fisiologia , Neurite Óptica/fisiopatologia , Doenças Retinianas/fisiopatologia , Células Ganglionares da Retina/fisiologia , Acuidade Visual/fisiologia
4.
Clin Immunol ; 170: 9-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394164

RESUMO

The presence of immunoglobulin oligoclonal bands in the cerebrospinal fluid of Multiple Sclerosis (MS) patients supports the hypothesis of an infectious etiology, although the antigenic targets remain elusive. Neurotropic mouse hepatitis virus (MHV) infection in mice provides a useful tool for studying mechanisms of demyelination in a virus-induced experimental model of MS. This study uses Affymetrix microarray analysis to compare differential spinal cord mRNA levels between mice infected with demyelinating and non-demyelinating strains of MHV to identify host immune genes expressed in this demyelinating disease model. The study reveals that during the acute stage of infection, both strains induce inflammatory innate immune response genes, whereas upregulation of several immunoglobulin genes during chronic stage infection is unique to infection with the demyelinating strain. Results suggest that the demyelinating strain induced an innate-immune response during acute infection that may promote switching of Ig isotype genes during chronic infection, potentially playing a role in antibody-mediated progressive demyelination even after viral clearance.


Assuntos
Imunidade Adaptativa/genética , Infecções por Coronavirus/genética , Doenças Desmielinizantes/genética , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/virologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/virologia
5.
J Neurosci ; 33(8): 3582-7, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426685

RESUMO

Dexras1, a small G-protein localized predominantly to the brain, is transcriptionally upregulated by the synthetic glucocorticoid dexamethasone. It has close homology to the Ras subfamily but differs in that Dexras1 contains an extended 7 kDa C-terminal tail. Previous studies in our laboratory showed that NMDA receptor activation, via NO and Dexras1, physiologically stimulates DMT1, the major iron importer. A membrane-permeable iron chelator substantially reduces NMDA excitotoxicity, suggesting that Dexras1-mediated iron influx plays a crucial role in NMDA/NO-mediated cell death. We here report that iron influx is elicited by nitric oxide but not by other proapoptotic stimuli, such as H2O2 or staurosporine. Deletion of Dexras1 in mice attenuates NO-mediated cell death in dissociated primary cortical neurons and retinal ganglion cells in vivo. Thus, Dexras1 appears to mediate NMDA-elicited neurotoxicity via NO and iron influx.


Assuntos
Córtex Cerebral/fisiologia , Ácido Glutâmico/toxicidade , N-Metilaspartato/toxicidade , Células Ganglionares da Retina/fisiologia , Proteínas ras/fisiologia , Animais , Córtex Cerebral/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Células HEK293 , Humanos , Ferro/metabolismo , Ferro/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/fisiologia , N-Metilaspartato/fisiologia , Óxido Nítrico/fisiologia , Óxido Nítrico/toxicidade , Células PC12 , Ratos , Proteínas ras/deficiência
6.
Neurotherapeutics ; 20(4): 1138-1153, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37160530

RESUMO

Resveratrol is a natural polyphenol which may be useful for treating neurodegenerative diseases such as multiple sclerosis (MS). To date, current immunomodulatory treatments for MS aim to reduce inflammation with limited effects on the neurodegenerative component of this disease. The purpose of the current study is to develop a novel nanoparticle formulation of resveratrol to increase its solubility, and to assess its ability to prevent optic nerve and spinal cord degeneration in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Resveratrol nanoparticles (RNs) were made using a thin rehydration technique. EAE mice received a daily oral administration of vehicle, RNs or unconjugated resveratrol for one month. They were assessed daily for clinical signs of paralysis and weekly for their visual acuity with optokinetic responses (OKR). After one month, their spinal cords and optic nerves were stained for inflammation and demyelination and retinal ganglion cells immunostained for Brn3a. RNs were stable for three months. The administration of RNs did not have any effect on clinical manifestation of EAE and did not preserve OKR scores but reduced the intensity of the disease. It did not reduce inflammation and demyelination in the spinal cord and the optic nerve. However, RNs were able to decrease RGC loss compared to the vehicle. Results demonstrate that resveratrol is neuroprotective by reducing RGC loss. Interestingly, neuroprotective effects and decreased disease severity occurred without reduction of inflammation or demyelination, suggesting this therapy may fill an unmet need to limit the neurodegenerative component of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Fármacos Neuroprotetores , Neurite Óptica , Camundongos , Animais , Resveratrol , Fármacos Neuroprotetores/uso terapêutico , Solubilidade , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
7.
Neurotherapeutics ; 20(3): 896-907, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36941497

RESUMO

SIRT1 prevents retinal ganglion cell (RGC) loss in several acute and subacute optic neuropathy models following pharmacologic activation or genetic overexpression. We hypothesized that adeno-associated virus (AAV)-mediated overexpression of SIRT1 in RGCs in a chronic ocular hypertension model can reduce RGC loss, thereby preserving visual function by sustained therapeutic effect. A control vector AAV-eGFP and therapeutic vector AAV-SIRT1 were constructed and optimized for transduction efficiency. A magnetic microbead mouse model of ocular hypertension was optimized to induce a time-dependent and chronic loss of visual function and RGC degeneration. Mice received intravitreal injection of control or therapeutic AAV in which a codon-optimized human SIRT1 expression is driven by a RGC selective promoter. Intraocular pressure (IOP) was measured, and visual function was examined by optokinetic response (OKR) weekly for 49 days following microbead injection. Visual function, RGC survival, and axon numbers were compared among control and therapeutic AAV-treated animals. AAV-eGFP and AAV-SIRT1 showed transduction efficiency of ~ 40%. AAV-SIRT1 maintains the transduction of SIRT1 over time and is selectively expressed in RGCs. Intravitreal injections of AAV-SIRT1 in a glaucoma model preserved visual function, increased RGC survival, and reduced axonal degeneration compared with the control construct. Over-expression of SIRT1 through AAV-mediated gene transduction indicates a RGC-selective component of neuroprotection in multiple models of acute optic nerve degeneration. Results here show a neuroprotective effect of RGC-selective gene therapy in a chronic glaucoma model characterized by sustained elevation of IOP and subsequent RGC loss. Results suggest that this strategy may be an effective therapeutic approach for treating glaucoma, and warrants evaluation for the treatment of other chronic neurodegenerative diseases.


Assuntos
Glaucoma , Hipertensão Ocular , Humanos , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Pressão Intraocular , Sirtuína 1/genética , Sirtuína 1/metabolismo , Glaucoma/genética , Glaucoma/terapia , Hipertensão Ocular/genética , Hipertensão Ocular/terapia , Terapia Genética/métodos , Modelos Animais de Doenças , Axônios/metabolismo
8.
J Neurosci ; 30(13): 4725-34, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20357123

RESUMO

Interleukin-15 (IL15) is a cytokine produced by normal brain, but the functions of the IL15 system in normal adults are not yet clear. The hypothesis that the hippocampal IL15 system is essential for memory consolidation was tested by use of IL15Ralpha knock-out mice in behavioral, biochemical, immunohistological, and electron microscopic analyses. The knock-out mice showed deficits in memory, determined by the Stone T-maze and fear conditioning. In their hippocampi, the concentration of GABA was significantly lower. There were region-specific changes of the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD), with increased GAD-67-immunopositive interneurons in the stratum oriens of the CA1 region of the hippocampus, accompanied by nonsignificant reduction of GAD-67 synapses in the CA3 region. Western blotting showed an increase of GAD-65, but not GAD-67, in the hippocampal homogenate. The ultrastructure of the hippocampus remained intact in the knock-out mice. To further test the hypothesis that IL15 directly modulates GABA turnover by reuptake mechanisms, the dose-response relationship of IL15 on (3)H-GABA uptake was determined in two neuronal cell lines. The effective and nontoxic dose was further used in the synaptosomal uptake studies. IL15 decreased the uptake of (3)H-GABA in synaptosomes from the forebrain of wild-type mice. Consistent with this, IL15Ralpha knock-out mice had increased synaptosomal uptake of (3)H-GABA. Overall, the results show novel functions of a unique cytokine in normal hippocampal activity by regulating GABA transmission.


Assuntos
Hipocampo/fisiologia , Subunidade alfa de Receptor de Interleucina-15/fisiologia , Memória/fisiologia , Neurotransmissores/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Condicionamento Psicológico , Medo , Glutamato Descarboxilase/metabolismo , Hipocampo/ultraestrutura , Interleucina-15/farmacologia , Interleucina-15/fisiologia , Subunidade alfa de Receptor de Interleucina-15/genética , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Sinaptossomos/metabolismo
9.
Transl Vis Sci Technol ; 10(1): 8, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33505775

RESUMO

Purpose: Traumatic optic neuropathy (TON) is often caused by blunt head trauma and has no currently effective treatment. Common animal models of TON induced by surgical crush injury are plagued by variability and do not mimic typical mechanisms of TON injury. Traumatic head impact models have recently shown evidence of TON, but the degree of head impact necessary to consistently induce TON is not well characterized, and it is examined here. Methods: Traumatic skull impacts to C57BL/6J mice were induced using an electromagnetic controlled impact device. One impact performed at two depths (mild and severe), as well as three and five repetitive impacts with an interconcussion interval of 48 hours, were tested. Optokinetic responses (OKRs) and retinal ganglion cell (RGC) loss were measured. Results: Five repetitive mild impacts significantly decreased OKR scores and RGC numbers compared with control mice 10 weeks after initial impact, with maximal pathology observed by 6 weeks and partial but significant loss present by 3 weeks. One severe impact induced similar TON. Three mild impacts also induced early OKR and RGC loss, but one mild impact did not. Equivalent degrees of TON were induced bilaterally, and a significant correlation was observed between OKR scores and RGC numbers. Conclusions: Repetitive, mild closed head trauma in mice induces progressive RGC and vision loss that worsens with increasing impacts. Translational Relevance: Results detail a reproducible model of TON that provides a reliable platform for studying potential treatments over a 3- to 6-week time course.


Assuntos
Traumatismos Cranianos Fechados , Traumatismos do Nervo Óptico , Animais , Modelos Animais de Doenças , Traumatismos Cranianos Fechados/complicações , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina
10.
Neurotherapeutics ; 18(1): 448-459, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067748

RESUMO

The human amnion has been used for decades in wound healing, particularly burns. Amnion epithelial cells (AECs) have been the focus of extensive research based on their possible pluripotent differentiation ability. A novel, cultured cell population derived from AECs, termed human amnion-derived multipotent progenitor (AMP) cells, secrete numerous cytokines and growth factors that enhance tissue regeneration and reduce inflammation. This AMP cell secretome, termed ST266, is a unique biological solution that accumulates in eyes and optic nerves following intranasal delivery, resulting in selective suppression of optic neuritis in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, but not myelitis at the administered dose. We tested the hypothesis that systemic AMP cell administration could suppress both optic neuritis and myelitis in EAE. Intravenous and intraperitoneal administration of AMP cells significantly reduced ascending paralysis and attenuated visual dysfunction in EAE mice. AMP cell treatment increased retinal ganglion cell (RGC) survival and decreased optic nerve inflammation, with variable improvement in optic nerve demyelination and spinal cord inflammation and demyelination. Results show systemic AMP cell administration inhibits RGC loss and visual dysfunction similar to previously demonstrated effects of intranasally delivered ST266. Importantly, AMP cells also promote neuroprotective effects in EAE spinal cords, marked by reduced paralysis. Protective effects of systemically administered AMP cells suggest they may serve as a potential novel treatment for multiple sclerosis.


Assuntos
Células-Tronco Multipotentes/transplante , Mielite/terapia , Neurite Óptica/terapia , Âmnio/citologia , Animais , Doenças Desmielinizantes/terapia , Encefalomielite Autoimune Experimental/terapia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/metabolismo , Medula Espinal/patologia
11.
PLoS One ; 16(1): e0243862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33406093

RESUMO

ST266 is the biological secretome of cultured Amnion-derived Multipotent Progenitor cells containing multiple growth factors and cytokines. While intranasally-administered ST266 improves the phenotype in experimental optic neuritis, specific ST266 components mediating these effects are not known. We compared the effects of ST266 with and without removal of large molecular weight proteins both in vitro and in the multiple sclerosis model experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice. Mice were treated daily with intranasal vehicle, ST266 or lower molecular weight fraction of ST266. Retinal ganglion cells were counted in isolated retinas, and optic nerves were assessed for inflammation and demyelination. ST266 treatment significantly improved retinal ganglion cell survival and reduced optic nerve demyelination in EAE mice. The lower molecular weight ST266 fraction significantly improved optic nerve demyelination, but only showed a trend towards improved retinal ganglion cell survival. ST266 fractions below 50kDa increased Schwann cell proliferation in vitro, but were less effective than non-fractionated ST266. Demyelination attenuation was partially associated with the lower molecular weight ST266 fraction, but removal of higher molecular weight biomolecules from ST266 diminishes its neuroprotective effects, suggesting at least some high molecular weight proteins play a role in ST266-mediated neuroprotection.


Assuntos
Âmnio/citologia , Células-Tronco Multipotentes/citologia , Neuroproteção , Animais , Proliferação de Células , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos Endogâmicos C57BL , Peso Molecular , Glicoproteína Mielina-Oligodendrócito , Nervo Óptico/patologia , Neurite Óptica/complicações , Neurite Óptica/patologia , Peptídeos , Células Ganglionares da Retina/patologia , Células de Schwann/patologia
12.
Epilepsy Behav ; 17(4): 441-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20153260

RESUMO

In the present study, the effects of Bacopa monnieri and its active component, bacoside A, on motor deficit and alterations of GABA receptor functional regulation in the cerebellum of epileptic rats were investigated. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the cerebellum of epileptic rats revealed a significant decrease in B(max) compared with control. Real-time polymerase chain reaction amplification of GABA(A) receptor subunits-GABA(Aalpha1), GABA(Aalpha5,) and GABA(Adelta)-was downregulated (P<0.001) in the cerebellum of epileptic rats compared with control rats. Epileptic rats exhibit deficits in radial arm and Y-maze performance. Treatment with B. monnieri and bacoside A reversed these changes to near-control levels. Our results suggest that changes in GABAergic activity, motor learning, and memory deficit are induced by the occurrence of repetitive seizures. Treatment with B. monnieri and bacoside A prevents the occurrence of seizures thereby reducing the impairment of GABAergic activity, motor learning, and memory deficit.


Assuntos
Sintomas Comportamentais , Cerebelo/efeitos dos fármacos , Epilepsia/complicações , Epilepsia/patologia , Fitoterapia/métodos , Preparações de Plantas/uso terapêutico , Receptores de GABA/metabolismo , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Anticonvulsivantes/uso terapêutico , Sintomas Comportamentais/tratamento farmacológico , Sintomas Comportamentais/etiologia , Bicuculina/farmacocinética , Carbamazepina/uso terapêutico , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Antagonistas GABAérgicos/farmacocinética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Pilocarpina , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Trítio/farmacocinética , Ácido gama-Aminobutírico/farmacocinética
13.
J Neurochem ; 111(3): 819-27, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19719822

RESUMO

The blood-brain barrier is a gatekeeper and modulatory interface for the CNS. Cerebral endothelial cells are the major component of the blood-brain barrier, and they modify inflammatory signals from the circulation to the CNS by production and secretion of secondary substances. The inflammatory mediators induced by tumor necrosis factor alpha (TNF) were determined by microarray analysis of RBE4 cerebral endothelial cells, at 0, 6, 12, or 24 h after TNF treatment. Interleukin (IL)-15 and its receptors were among the most robustly up-regulated genes. This was confirmed by real-time RT-PCR and western blotting. The three subunits of the IL15 receptor complex (IL15Ralpha, IL2Rbeta, and IL2Rgamma) showed differential regulation by TNF in their time course and amplitude of increased expression. Consistent with increased expression of the specific high affinity receptor IL15Ralpha, TNF increased cellular uptake of (125)I-IL15 and enhanced the fluorescent intensity of Alexa568-IL15 in RBE4 cells. TNF treatment in mice also increased the level of expression of IL15 receptors in enriched cerebral microvessels. We conclude that the cerebral microvascular IL15 system is a novel inflammatory mediator that transduces the actions of TNF.


Assuntos
Córtex Cerebral/anatomia & histologia , Interleucina-15/metabolismo , Microvasos/citologia , Fatores de Necrose Tumoral/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Interleucina-15/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/metabolismo , Ratos , Receptores de Interleucina-15/classificação , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo , Fatores de Tempo
14.
Sci Rep ; 9(1): 11664, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406150

RESUMO

Dysregulation of iron metabolism, and resultant cytotoxicity, has been implicated in the pathogenesis of multiple sclerosis (MS) and other neurodegenerative processes. Iron accumulation promotes cytotoxicity through various mechanisms including oxidative stress and glutamate toxicity, and occurs in both MS patients and in the experimental autoimmune encephalomyelitis (EAE) model of MS. Divalent Metal Transporter1, a major iron importer in cells, is stimulated by signaling of Dexras1, a small G protein member of the Ras family. Dexras1 is activated by S-nitrosylation by nitric oxide (NO) produced by either inducible nitric oxide synthase in activated microglia/macrophages or neuronal nitric oxide synthase in neurons. Here we show Dexras1 exacerbates oxidative stress-induced neurodegeneration in experimental optic neuritis, an inflammatory demyelinating optic nerve condition that occurs in MS and EAE. Dexras1 deletion, as well as treatment with the iron chelator deferiprone, preserves vision and attenuates retinal ganglion cell (RGC) and axonal loss during EAE optic neuritis. These results suggest that iron entry triggered by NO-activated Dexras1 signaling is a potential mechanism of neuronal death in experimental optic neuritis. The current data suggest modulation of Dexras1 signaling and iron chelation are potential novel treatment strategies for optic neuritis and MS, and possibly other optic neuropathies as well.


Assuntos
Encefalomielite Autoimune Experimental/complicações , Ferro/metabolismo , Esclerose Múltipla/complicações , Neurite Óptica/prevenção & controle , Proteínas ras/metabolismo , Animais , Quelantes/administração & dosagem , Deferiprona/administração & dosagem , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/patologia , Óxido Nítrico/metabolismo , Neurite Óptica/etiologia , Neurite Óptica/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas ras/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-30234031

RESUMO

Neurotropic strains of mouse hepatitis virus (MHV) induce acute inflammation and chronic demyelination in the spinal cord and optic nerves mediated by axonal spread following intracranial inoculation in mice, with pathologic features similar to the human demyelinating disease multiple sclerosis. Spinal cord demyelination is also induced following intranasal inoculation with neurotropic MHV strains, however much higher viral doses are required as compared to intracranial inoculation. Recently, it was shown that intranasal administration of low concentrations of proteins leads to significant, rapid accumulation of protein in the optic nerve and in the eye, with only low levels reaching spinal cord and other brain regions. Thus, we examined whether intranasal inoculation with MHV at doses equivalent to those given intracranially could induce optic neuritis-inflammation, demyelination and loss of retinal ganglion cells (RGCs) in the optic nerve with or without inducing spinal cord demyelination. Four week old male C57BL/6J mice were inoculated intracranially with the recombinant demyelinating strain RSA59, or intranasally with RSA59 or the non-demyelinating strain RSMHV2 as control. One month post-inoculation, mice inoculated intracranially with RSA59 had significant myelin loss in both spinal cord and optic nerves, with significant loss of RGCs as well, consistent with prior studies. As expected, intranasal inoculation with RSA59 failed to induce demyelination in spinal cord; however, it also did not induce optic nerve demyelination. No acute inflammation was found, and no viral antigen was detected, in the optic nerve or retina 1 day after inoculation. Results confirm the neurotropic effects of RSA59 following intracranial inoculation, and suggest that direct infection with axonal transport of virus from brain to spinal cord and optic nerve is required to induce demyelinating disease. These studies suggest that MHV does not selectively concentrate in optic nerve and retina to sufficient levels to induce demyelination following intranasal inoculation. Intracranial inoculation should continue to be considered a preferred method for studies of MHV-induced optic neuritis and central nervous system (CNS) demyelinating disease.


Assuntos
Modelos Animais de Doenças , Esclerose Múltipla/patologia , Vírus da Hepatite Murina/crescimento & desenvolvimento , Neurite Óptica/patologia , Administração Intranasal , Animais , Sobrevivência Celular , Injeções Intraventriculares , Camundongos Endogâmicos C57BL , Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Medula Espinal/patologia
16.
Invest Ophthalmol Vis Sci ; 59(6): 2470-2477, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847652

RESUMO

Purpose: Intranasally delivered ST266, the biological, proteinaceous secretome of amnion-derived multipotent progenitor cells, reduces retinal ganglion cell (RGC) loss, optic nerve inflammation, and demyelination in experimental optic neuritis. This unique therapy and novel administration route delivers numerous cytokines and growth factors to the eye and optic nerve, suggesting a potential to also treat other optic neuropathies. Thus, ST266-mediated neuroprotection was examined following traumatic optic nerve injury. Methods: Optic nerve crush injury was surgically induced in C57BL/6J mice. Mice were treated daily with intranasal PBS or ST266. RGC function was assessed by optokinetic responses (OKRs), RGCs were counted, and optic nerve sections were stained with luxol fast blue and anti-neurofilament antibodies to assess myelin and RGC axon damage. Results: Intranasal ST266 administered daily for 5 days, beginning at the time that a 1-second optic nerve crush was performed, significantly attenuated OKR decreases. Furthermore, ST266 treatment reduced damage to RGC axons and myelin within optic nerves, and blocked RGC loss. Following a 4-second optic nerve crush, intranasal ST266 increased RGC survival and showed a trend toward reduced RGC axon and myelin damage. Ten days following optic nerve crush, ST266 prevented myelin damage, while also inducing a trend toward increased RGC survival and visual function. Conclusions: ST266 significantly attenuates traumatic optic neuropathy. Neuroprotective effects of this unique combination of biologic molecules observed here and previously in optic neuritis suggest potential broad application for preventing neuronal damage in multiple optic nerve disorders. Furthermore, results support intranasal delivery as a novel, noninvasive therapeutic modality for eyes and optic nerves.


Assuntos
Âmnio/metabolismo , Citocinas/administração & dosagem , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Traumatismos do Nervo Óptico/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Administração Intranasal , Animais , Axônios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Compressão Nervosa , Nistagmo Optocinético/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia
17.
Oxid Med Cell Longev ; 2017: 7180632, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28680531

RESUMO

The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis.


Assuntos
2,4-Dinitrofenol/metabolismo , Mitocôndrias/metabolismo , Neurite Óptica/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurite Óptica/metabolismo , Pró-Fármacos
18.
Sci Rep ; 7: 41768, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139754

RESUMO

The ability of a novel intranasally delivered amnion cell derived biologic to suppress inflammation, prevent neuronal damage and preserve neurologic function in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis was assessed. Currently, there are no existing optic nerve treatment methods for disease or trauma that result in permanent vision loss. Demyelinating optic nerve inflammation, termed optic neuritis, induces permanent visual dysfunction due to retinal ganglion cell damage in multiple sclerosis and experimental autoimmune encephalomyelitis. ST266, the biological secretome of Amnion-derived Multipotent Progenitor cells, contains multiple anti-inflammatory cytokines and growth factors. Intranasally administered ST266 accumulated in rodent eyes and optic nerves, attenuated visual dysfunction, and prevented retinal ganglion cell loss in experimental optic neuritis, with reduced inflammation and demyelination. Additionally, ST266 reduced retinal ganglion cell death in vitro. Neuroprotective effects involved oxidative stress reduction, SIRT1-mediated mitochondrial function promotion, and pAKT signaling. Intranasal delivery of neuroprotective ST266 is a potential novel, noninvasive therapeutic modality for the eyes, optic nerves and brain. The unique combination of biologic molecules in ST266 provides an innovative approach with broad implications for suppressing inflammation in autoimmune diseases, and for preventing neuronal damage in acute neuronal injury and chronic neurodegenerative diseases such as multiple sclerosis.


Assuntos
Âmnio/metabolismo , Fatores Biológicos/administração & dosagem , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Administração Intranasal , Animais , Axônios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doenças Desmielinizantes , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Camundongos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Neurite Óptica/etiologia , Neurite Óptica/metabolismo , Neurite Óptica/patologia , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Acta Neuropathol Commun ; 2: 3, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24383546

RESUMO

BACKGROUND: Multiple sclerosis (MS) is characterized by central nervous system inflammation and demyelination, and increasing evidence demonstrates significant neuronal damage also occurs and is associated with permanent functional impairment. Current MS therapies have limited ability to prevent neuronal damage, suggesting additional neuroprotective therapies are needed. Compounds that activate the NAD+-dependent SIRT1 deacetylase prevent neuronal loss in an autoimmune-mediated MS model, but the mechanism of this effect is unknown, and it is unclear whether SIRT1 activating compounds exert similar effects in demyelinating disease induced by other etiologies. We measured neuronal loss in C57BL/6 mice inoculated with a neurotropic strain of mouse hepatitis virus, MHV-A59, that induces an MS-like disease. RESULTS: Oral treatment with the SIRT1 activating compound SRTAW04 significantly increased SIRT1 activity within optic nerves and prevented neuronal loss during optic neuritis, an inflammatory demyelinating optic nerve lesion that occurs in MS and its animal models. MHV-A59 induced neuronal loss was associated with reactive oxygen species (ROS) accumulation, and SRTAW04 treatment significantly reduced ROS levels while promoting increased expression of enzymes involved in mitochondrial function and reduction of ROS. SRTAW04 exerted similar protective effects in EAE spinal cords, with decreased demyelination. CONCLUSIONS: Results demonstrate that SIRT1 activating compounds prevent neuronal loss in viral-induced demyelinating disease similar to their effects in autoimmune-mediated disease. One mechanism of this neuroprotective effect involves increasing mitochondrial biogenesis with reduction of oxidative stress. SIRT1 activators represent a potential neuroprotective therapy for MS. Understanding common mechanisms of these effects in distinct disease models will help identify targets for more specific therapies.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/fisiopatologia , Neurônios/patologia , Estresse Oxidativo/fisiologia , Sirtuína 1/metabolismo , Análise de Variância , Animais , Carbazóis/uso terapêutico , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/tratamento farmacológico , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/virologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Vírus de Hepatite/patogenicidade , Hepatite Viral Animal/complicações , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Estilbamidinas , Fatores de Tempo
20.
Invest Ophthalmol Vis Sci ; 55(9): 5744-51, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25139738

RESUMO

PURPOSE: Optic nerve inflammation, demyelination, and axonal loss are all prominent features of optic neuritis. While corticosteroids hasten visual recovery in optic neuritis, no treatment improves final visual outcomes. HE3286 (17α-ethynyl-5-androstene-3ß,7ß,17ß-triol), a synthetic derivative of a natural steroid, ß-AET (5-androstene-3ß,7ß,17ß-triol), exerts anti-inflammatory effects in several disease models and has purported neuroprotective effects as well. HE3286's ability to suppress optic neuritis was examined in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. METHODS: Experimental autoimmune encephalomyelitis was induced in C57/BL6 mice. Mice were treated daily with intraperitoneal vehicle or 40 mg/kg HE3286. Visual function was assessed by optokinetic responses (OKR) at baseline and every 10 days until euthanasia at 40 days post immunization. Retinas and optic nerves were isolated. Inflammation (hematoxylin and eosin and Iba1 staining), demyelination (Luxol fast blue staining), and axonal loss (neurofilament staining) were assessed in optic nerve sections. Retinal ganglion cells (RGCs) were immunolabeled with Brn3a antibodies to quantify RGC survival. RESULTS: Progressive decreases in OKR occurred in vehicle-treated EAE mice, and HE3286 treatment reduced the level of this vision loss. HE3286 also attenuated the degree of inflammation, demyelination, and axonal loss in EAE optic nerves as compared to nerves from vehicle-treated EAE mice. Retinal ganglion cell loss that occurred in both vehicle- and HE3286-treated EAE mice was reduced in the temporal retinal quadrant of HE3286-treated mice. CONCLUSIONS: HE3286 suppresses inflammation, reduces demyelination and axonal loss, and promotes RGC survival during experimental optic neuritis. Importantly, HE3286 treatment also preserves some RGC function. Results suggest that HE3286 is a potential novel treatment for optic neuritis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Axônios/efeitos dos fármacos , Desidroepiandrosterona/análogos & derivados , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Neurite Óptica/tratamento farmacológico , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Axônios/patologia , Desidroepiandrosterona/uso terapêutico , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurite Óptica/patologia , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA