Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105542, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072058

RESUMO

The gastric proton pump (H+,K+-ATPase) transports a proton into the stomach lumen for every K+ ion exchanged in the opposite direction. In the lumen-facing state of the pump (E2), the pump selectively binds K+ despite the presence of a 10-fold higher concentration of Na+. The molecular basis for the ion selectivity of the pump is unknown. Using molecular dynamics simulations, free energy calculations, and Na+ and K+-dependent ATPase activity assays, we demonstrate that the K+ selectivity of the pump depends upon the simultaneous protonation of the acidic residues E343 and E795 in the ion-binding site. We also show that when E936 is protonated, the pump becomes Na+ sensitive. The protonation-mimetic mutant E936Q exhibits weak Na+-activated ATPase activity. A 2.5-Å resolution cryo-EM structure of the E936Q mutant in the K+-occluded E2-Pi form shows, however, no significant structural difference compared with wildtype except less-than-ideal coordination of K+ in the mutant. The selectivity toward a specific ion correlates with a more rigid and less fluctuating ion-binding site. Despite being exposed to a pH of 1, the fundamental principle driving the K+ ion selectivity of H+,K+-ATPase is similar to that of Na+,K+-ATPase: the ionization states of the acidic residues in the ion-binding sites determine ion selectivity. Unlike the Na+,K+-ATPase, however, protonation of an ion-binding glutamate residue (E936) confers Na+ sensitivity.


Assuntos
Simulação de Dinâmica Molecular , Potássio , Potássio/metabolismo , Estômago , Sítios de Ligação , Sódio/metabolismo , Adenosina Trifosfatases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/metabolismo
2.
J Biol Chem ; 300(5): 107267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583863

RESUMO

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Cães , Células HEK293 , Modelos Moleculares , Estrutura Terciária de Proteína
3.
Biophys J ; 123(5): 584-597, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38308436

RESUMO

Membrane voltage plays a vital role in the behavior and functions of the lipid bilayer membrane. For instance, it regulates the exchange of molecules across the membrane through transmembrane proteins such as ion channels. In this paper, we study the membrane voltage-sensing mechanism, which entails the reorientation of α-helices with a change in the membrane voltage. We consider a helix having a large electrical macrodipole embedded in a lipid bilayer as a model system. We performed extensive molecular dynamics simulations to study the effect of variation of membrane voltage on the tilt angle of peptides and ascertain the optimal parameters for designing such a voltage-sensing peptide. A theoretical model for the system is also developed to investigate the interplay of competing effects of hydrophobic mismatch and dipole-electric field coupling on the tilt of the peptide and further explore the parameter space. This work opens the possibility for the design and fabrication of artificial dipolar membrane voltage-sensing elements for biomedical applications.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Peptídeos/química , Simulação de Dinâmica Molecular , Canais Iônicos/metabolismo
4.
Biophys J ; 123(8): 1006-1014, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38486451

RESUMO

Plasma membrane damage occurs in healthy cells and more frequently in cancer cells where high growth rates and metastasis result in frequent membrane damage. The annexin family of proteins plays a key role in membrane repair. Annexins are recruited at the membrane injury site by Ca+2 and repair the damaged membrane in concert with several other proteins. Annexin A4 (ANXA4) and ANXA5 form trimers at the bilayer surface, and previous simulations show that the trimers induce high local negative membrane curvature on a flat bilayer. The membrane-curvature-inducing property of ANXA5 is presumed to be vital to the membrane repair mechanism. A previously proposed descriptive model hypothesizes that ANXA5-mediated curvature force is utilized at the free edge of the membrane at a wound site to pull the wound edges together, resulting in the formation of a "neck"-shaped structure, which, when combined with a constriction force exerted by ANXA6, leads to membrane repair. The molecular details and mechanisms of repair remain unknown, in part because the membrane edge is a transient structure that is difficult to investigate both experimentally and computationally. For the first time, we investigate the impact of ANXA5 near a membrane edge, which is modeled by a bicelle under periodic boundary conditions. ANXA5 trimers induce local curvature on the membrane leading to global bending of the bicelle. The global curvature depends on the density of annexins on the bicelle, and the curvature increases with the ANXA5 concentration until it reaches a plateau. The simulations suggest that not only do annexins induce local membrane curvature, but they can change the overall shape of a free-standing membrane. We also demonstrate that ANXA5 trimers reduce the rate of phosphatidylserine lipid diffusion from the cytoplasmic to the exoplasmic leaflet along the edge of the bicelle. In this way, membrane-bound annexins can potentially delay the apoptotic signal triggered by the presence of phosphatidylserine lipids in the outer leaflet, thus biding time for repair of the membrane hole. Our findings provide new insights into the role of ANXA5 at the edges of the membrane (the injury site) and support the curvature-constriction model of membrane repair.


Assuntos
Anexinas , Fosfatidilserinas , Anexina A5/análise , Anexina A5/metabolismo , Fosfatidilserinas/metabolismo , Membrana Celular/metabolismo , Anexinas/análise , Anexinas/química , Anexinas/metabolismo , Membranas/metabolismo
5.
Biophys J ; 122(14): 3008-3017, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37029488

RESUMO

The annexins are a family of Ca2+-dependent peripheral membrane proteins. Several annexins are implicated in plasma membrane repair and are overexpressed in cancer cells. Annexin A4 (ANXA4) and annexin A5 (ANXA5) form trimers that induce high curvature on a membrane surface, a phenomenon deemed to accelerate membrane repair. Despite being highly homologous to ANXA4, annexin A3 (ANXA3) does not form trimers on the membrane surface. Using molecular dynamics simulations, we have reverse engineered an ANXA3-mutant to trimerize on the surface of the membrane and induce high curvature reminiscent of ANXA4. In addition, atomic force microscopy images show that, like ANXA4, the engineered protein forms crystalline arrays on a supported lipid membrane. Despite the trimer-forming and curvature-inducing properties of the engineered ANXA3, it does not accumulate near a membrane lesion in laser-punctured cells and is unable to repair the lesion. Our investigation provides insights into the factors that drive annexin-mediated membrane repair and shows that the membrane-repairing property of trimer-forming annexins also necessitates high membrane binding affinity, other than trimer formation and induction of negative membrane curvature.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Anexinas/química , Anexinas/metabolismo , Anexina A5/química , Anexina A5/metabolismo , Cicatrização , Membrana Celular/metabolismo
6.
J Biol Chem ; 297(2): 101012, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324830

RESUMO

Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.


Assuntos
Anexinas/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Fenotiazinas/farmacologia , Anexinas/metabolismo , Antipsicóticos/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo
7.
Glia ; 69(1): 28-41, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32506554

RESUMO

The mammalian brain consists of 80% water, which is continuously shifted between different compartments and cellular structures by mechanisms that are, to a large extent, unresolved. Aquaporin 4 (AQP4) is abundantly expressed in glia and ependymal cells of the mammalian brain and has been proposed to act as a gatekeeper for brain water dynamics, predominantly based on studies utilizing AQP4-deficient mice. However, these mice have a range of secondary effects due to the gene deletion. An efficient and selective AQP4 inhibitor has thus been sorely needed to validate the results obtained in the AQP4-/- mice to quantify the contribution of AQP4 to brain fluid dynamics. In AQP4-expressing Xenopus laevis oocytes monitored by a high-resolution volume recording system, we here demonstrate that the compound TGN-020 is such a selective AQP4 inhibitor. TGN-020 targets the tested species of AQP4 with an IC50 of ~3.5 µM, but displays no inhibitory effect on the other AQPs (AQP1-AQP9). With this tool, we employed rat hippocampal slices and ion-sensitive microelectrodes to determine the role of AQP4 in glia cell swelling following neuronal activity. TGN-020-mediated inhibition of AQP4 did not prevent stimulus-induced extracellular space shrinkage, nor did it slow clearance of the activity-evoked K+ transient. These data, obtained with a verified isoform-selective AQP4 inhibitor, indicate that AQP4 is not required for the astrocytic contribution to the K+ clearance or the associated extracellular space shrinkage.


Assuntos
Neuroglia , Animais , Aquaporina 4/genética , Aquaporinas , Astrócitos/metabolismo , Edema , Camundongos , Neuroglia/metabolismo , Isoformas de Proteínas , Ratos , Água/metabolismo
8.
PLoS Comput Biol ; 16(10): e1007554, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33021976

RESUMO

Lysosomal accumulation of cholesterol is a hallmark of Niemann Pick type C (NPC) disease caused by mutations primarily in the lysosomal membrane protein NPC1. NPC1 contains a transmembrane sterol-sensing domain (SSD), which is supposed to regulate protein activity upon cholesterol binding, but the mechanisms underlying this process are poorly understood. Using atomistic simulations, we show that in the absence of cholesterol in the SSD, the luminal domains of NPC1 are highly dynamic, resulting in the disengagement of the NTD from the rest of the protein. The disengaged NPC1 adopts a flexed conformation that approaches the lipid bilayer, and could represent a conformational state primed to receive a sterol molecule from the soluble lysosomal cholesterol carrier NPC2. The binding of cholesterol to the SSD of NPC1 allosterically suppresses the conformational dynamics of the luminal domains resulting in an upright NTD conformation. The presence of an additional 20% cholesterol in the membrane has negligible impact on this process. The additional presence of an NTD-bound cholesterol suppresses the flexing of the NTD. We propose that cholesterol acts as an allosteric effector, and the modulation of NTD dynamics by the SSD-bound cholesterol constitutes an allosteric feedback mechanism in NPC1 that controls cholesterol abundance in the lysosomal membrane.


Assuntos
Colesterol , Peptídeos e Proteínas de Sinalização Intracelular , Colesterol/química , Colesterol/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Modelos Moleculares , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Ligação Proteica , Domínios Proteicos
9.
Soft Matter ; 17(2): 308-318, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32756654

RESUMO

The plasma membrane (PM) of eukaryotic cells consists of a crowded environment comprised of a high diversity of proteins in a complex lipid matrix. The lateral organization of membrane proteins in the PM is closely correlated with biological functions such as endocytosis, membrane budding and other processes which involve protein mediated shaping of the membrane into highly curved structures. Annexin A4 (ANXA4) is a prominent player in a number of biological functions including PM repair. Its binding to membranes is activated by Ca2+ influx and it is therefore rapidly recruited to the cell surface near rupture sites where Ca2+ influx takes place. However, the free edges near rupture sites can easily bend into complex curvatures and hence may accelerate recruitment of curvature sensing proteins to facilitate rapid membrane repair. To analyze the curvature sensing behavior of curvature inducing proteins in crowded membranes, we quantifify the affinity of ANXA4 monomers and trimers for high membrane curvatures by extracting membrane nanotubes from giant PM vesicles (GPMVs). ANXA4 is found to be a sensor of negative membrane curvatures. Multiscale simulations, in which we extract molecular information from atomistic scale simulations as input to our macroscopic scale simulations, furthermore predicted that ANXA4 trimers generate membrane curvature upon binding and have an affinity for highly curved membrane regions only within a well defined membrane curvature window. Our results indicate that curvature sensing and mobility of ANXA4 depend on the trimer structure of ANXA4 which could provide new biophysical insight into the role of ANXA4 in membrane repair and other biological processes.


Assuntos
Anexina A4 , Proteínas de Membrana , Membrana Celular
10.
PLoS Comput Biol ; 15(1): e1006665, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645590

RESUMO

Binding of small molecules to proteins often involves large conformational changes in the latter, which open up pathways to the binding site. Observing and pinpointing these rare events in large scale, all-atom, computations of specific protein-ligand complexes, is expensive and to a great extent serendipitous. Further, relevant collective variables which characterise specific binding or un-binding scenarios are still difficult to identify despite the large body of work on the subject. Here, we show that possible primary and secondary binding pathways can be discovered from short simulations of the apo-protein without waiting for an actual binding event to occur. We use a projection formalism, introduced earlier to study deformation in solids, to analyse local atomic displacements into two mutually orthogonal subspaces-those which are "affine" i.e. expressible as a homogeneous deformation of the native structure, and those which are not. The susceptibility to non-affine displacements among the various residues in the apo- protein is then shown to correlate with typical binding pathways and sites crucial for allosteric modifications. We validate our observation with all-atom computations of three proteins, T4-Lysozyme, Src kinase and Cytochrome P450.


Assuntos
Proteínas/química , Proteínas/metabolismo , Animais , Biologia Computacional/métodos , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
11.
Langmuir ; 35(30): 9944-9953, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31291108

RESUMO

ATP is a fundamental intracellular molecule and is thought to diffuse freely throughout the cytosol. Evidence obtained from nucleotide-sensing sarcolemmal ion channels and red blood cells, however, suggest that ATP is compartmentalized or buffered, especially beneath the sarcolemma, but no definitive mechanism for restricted diffusion or potential buffering system has been postulated. In this study, we provide evidence from alterations to membrane dipole potential, membrane conductance, changes in enthalpy of phospholipid phase transition, and from free energy calculations that ATP associates with phospholipid bilayers. Furthermore, all-atom molecular dynamics simulations show that ATP can form aggregates in the aqueous phase at high concentrations. ATP interaction with membranes provides a new model to understand the diffusion of ATP through the cell. Coupled with previous reports of diffusion restriction in the subsarcolemmal space, these findings support the existence of compartmentalized or buffered pools of ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilcolinas/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Conformação Molecular , Fosfatidilcolinas/química , Termodinâmica
12.
Soft Matter ; 15(40): 8129-8136, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31589218

RESUMO

Interaction between mononucleotides and lipid membranes is believed to have played an important role in the origin of life on Earth. Studies on mononucleotide-lipid systems hitherto have focused on the influence of the lipid environment on the organization of the mononucleotide molecules, and the effect of the latter on the confining medium has not been investigated in detail. We have probed the interaction of the mononucleotide, uridine 5'-monophosphate (UMP), and its disodium salt (UMPDSS) with fluid dimyristoylphosphatidylcholine (DMPC) membranes, using small-angle X-ray scattering (SAXS), cryogenic scanning electron microscopy (cryo-SEM) and computer simulations. UMP adsorbs and charges the lipid membrane, resulting in the formation of unilamellar vesicles in dilute solutions. Adsorption of UMP reduces the bilayer thickness of DMPC. UMPDSS has a much weaker effect on interbilayer interactions. These observations are in very good agreement with the results of an all-atom molecular dynamics simulation of these systems. In the presence of counterions, such as Na+, UMP forms small aggregates in water, which bind to the bilayer without significantly perturbing it. The phosphate moiety in the lipid headgroup is found to bind to the hydrogens from the sugar ring of UMP, while the choline group tends to bind to the two oxygens from the nucleotide base. These studies provide important insights into lipid-nucleotide interactions and the effect of the nucleotide on lipid membranes.

13.
Biophys J ; 114(8): 1895-1907, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694867

RESUMO

The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Glicerol/química , Bicamadas Lipídicas/metabolismo , Conformação Molecular
14.
Biochim Biophys Acta Biomembr ; 1860(6): 1282-1291, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29522705

RESUMO

The Na+,K+-ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31P and 2H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations.


Assuntos
Membrana Celular/química , ATPase Trocadora de Sódio-Potássio/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Polilisina/química , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Sus scrofa
16.
Hum Genet ; 137(2): 111-127, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29305691

RESUMO

Cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing impairment (CAPOS) is a rare clinically distinct syndrome caused by a single dominant missense mutation, c.2452G>A, p.Glu818Lys, in ATP1A3, encoding the neuron-specific alpha subunit of the Na+/K+-ATPase α3. Allelic mutations cause the neurological diseases rapid dystonia Parkinsonism and alternating hemiplegia of childhood, disorders which do not encompass hearing or visual impairment. We present detailed clinical phenotypic information in 18 genetically confirmed patients from 11 families (10 previously unreported) from Denmark, Sweden, UK and Germany indicating a specific type of hearing impairment-auditory neuropathy (AN). All patients were clinically suspected of CAPOS and had hearing problems. In this retrospective analysis of audiological data, we show for the first time that cochlear outer hair cell activity was preserved as shown by the presence of otoacoustic emissions and cochlear microphonic potentials, but the auditory brainstem responses were grossly abnormal, likely reflecting neural dyssynchrony. Poor speech perception was observed, especially in noise, which was beyond the hearing level obtained in the pure tone audiograms in several of the patients presented here. Molecular modelling and in vitro electrophysiological studies of the specific CAPOS mutation were performed. Heterologous expression studies of α3 with the p.Glu818Lys mutation affects sodium binding to, and release from, the sodium-specific site in the pump, the third ion-binding site. Molecular dynamics simulations confirm that the structure of the C-terminal region is affected. In conclusion, we demonstrate for the first time evidence for auditory neuropathy in CAPOS syndrome, which may reflect impaired propagation of electrical impulses along the spiral ganglion neurons. This has implications for diagnosis and patient management. Auditory neuropathy is difficult to treat with conventional hearing aids, but preliminary improvement in speech perception in some patients suggests that cochlear implantation may be effective in CAPOS patients.


Assuntos
Ataxia Cerebelar/genética , Deformidades Congênitas do Pé/genética , Perda Auditiva Central/genética , Perda Auditiva Neurossensorial/genética , Atrofia Óptica/genética , Reflexo Anormal/genética , ATPase Trocadora de Sódio-Potássio/genética , Adolescente , Adulto , Ataxia Cerebelar/epidemiologia , Ataxia Cerebelar/fisiopatologia , Criança , Pré-Escolar , Dinamarca/epidemiologia , Feminino , Deformidades Congênitas do Pé/epidemiologia , Deformidades Congênitas do Pé/fisiopatologia , Alemanha/epidemiologia , Perda Auditiva Central/epidemiologia , Perda Auditiva Central/fisiopatologia , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/genética , Atrofia Óptica/epidemiologia , Atrofia Óptica/fisiopatologia , Fenótipo , Estudos Retrospectivos , ATPase Trocadora de Sódio-Potássio/química , Suécia/epidemiologia , Adulto Jovem
17.
Soft Matter ; 14(27): 5615-5621, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29932192

RESUMO

The flavivirus Zika virus (ZV) became an international emergency within two years of its outbreak in the Americas. Dengue virus (DENV), which is also a flavivirus, causes significant clinical harm in equatorial regions. A common feature amongst flaviviruses like ZV and DENV is an icosahedral shell of exactly 180 copies of the envelope (E) and membrane (M) proteins anchored in a lipid membrane, which engulfs the viral RNA and capsid proteins. Host recognition by both ZV and DENV is linked to the presence of phosphatidylserine (PS) and phosphatidylethanolamine (PE) lipids in the viral lipidome. Glycosylation of Asn residues on the Zika E protein may be linked to ZV induced neuropathies. We carry out coarse grained molecular dynamics simulations of the E3M3 hexamer embedded in the ZV and DENV lipidomes, and we show that the proteins have a significantly different lipid footprint in the viral lipidome. PE lipids in DENV and PS lipids in ZV enrich near the protein hexamer. We attribute the difference to a higher number of cationic amino acids in the ZV M protein. We also show that the three glycosylation sites on ZV, but not on DENV, are conformationally variant. Our data shed new light on the lipid interactions, and thus the host recognition mechanisms of the two viruses, which may be molecular determinants of the neuropathies caused by the ZV.


Assuntos
Vírus da Dengue , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Zika virus , Sítios de Ligação , Glicosilação , Modelos Moleculares , Conformação Proteica
18.
Biophys J ; 112(2): 288-299, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122215

RESUMO

The Na+,K+-ATPase is present in the plasma membrane of all animal cells. It plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane, which are essential in numerous physiological processes, e.g., nerve, muscle, and kidney function. Its cellular activity must, therefore, be under tight metabolic control. Consideration of eosin fluorescence and stopped-flow kinetic data indicates that the enzyme's E2 conformation is stabilized by electrostatic interactions, most likely between the N-terminus of the protein's catalytic α-subunit and the adjacent membrane. The electrostatic interactions can be screened by increasing ionic strength, leading to a more evenly balanced equilibrium between the E1 and E2 conformations. This represents an ideal situation for effective regulation of the Na+,K+-ATPase's enzymatic activity, because protein modifications, which perturb this equilibrium in either direction, can then easily lead to activation or inhibition. The effect of ionic strength on the E1:E2 distribution and the enzyme's kinetics can be mathematically described by the Gouy-Chapman theory of the electrical double layer. Weakening of the electrostatic interactions and a shift toward E1 causes a significant increase in the rate of phosphorylation of the enzyme by ATP. Electrostatic stabilization of the Na+,K+-ATPase's E2 conformation, thus, could play an important role in regulating the enzyme's physiological catalytic turnover.


Assuntos
ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Eletricidade Estática , Trifosfato de Adenosina/metabolismo , Animais , Simulação de Dinâmica Molecular , Concentração Osmolar , Fosforilação , Conformação Proteica , ATPase Trocadora de Sódio-Potássio/química , Suínos
19.
Langmuir ; 33(41): 11010-11017, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28910109

RESUMO

Experimental and theoretical studies on ion-lipid interactions predict that binding of calcium ions to cell membranes leads to macroscopic mechanical effects and membrane remodeling. Herein, we provide experimental evidence that a point source of Ca2+ acting upon a negatively charged membrane generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer, which effectively neutralizes the surface charge density of outer leaflet of the bilayer. The mismatch in the surface charge density of the two leaflets leads to nonzero spontaneous curvature. We probe this mismatch through the use of molecular dynamics simulations and validate that calcium ion binding to a lipid membrane is sufficient to generate inward spontaneous curvature, bending the membrane. Additionally, we demonstrate that the formed tubular protrusions can be translated along the vesicle surface in a controlled manner by repositioning the site of localized Ca2+ exposure. The findings demonstrate lipid membrane remodeling in response to local chemical gradients and offer potential insights into the cell membrane behavior under conditions of varying calcium ion concentrations.


Assuntos
Cálcio/química , Cátions Bivalentes , Membrana Celular , Bicamadas Lipídicas
20.
J Biol Chem ; 290(6): 3720-31, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25533461

RESUMO

The Na(+),K(+)-ATPase is essential for ionic homeostasis in animal cells. The dephosphoenzyme contains Na(+) selective inward facing sites, whereas the phosphoenzyme contains K(+) selective outward facing sites. Under normal physiological conditions, K(+) inhibits cytoplasmic Na(+) activation of the enzyme. Acetamidinium (Acet(+)) and formamidinium (Form(+)) have been shown to permeate the pump through the outward facing sites. Here, we show that these cations, unlike K(+), are unable to enter the inward facing sites in the dephosphorylated enzyme. Consistently, the organic cations exhibited little to no antagonism to cytoplasmic Na(+) activation. Na(+),K(+)-ATPase structures revealed a previously undescribed rotamer transition of the hydroxymethyl side chain of the absolutely conserved Thr(772) of the α-subunit. The side chain contributes its hydroxyl to Na(+) in site I in the E1 form and rotates to contribute its methyl group toward K(+) in the E2 form. Molecular dynamics simulations to the E1·AlF4 (-)·ADP·3Na(+) structure indicated that 1) bound organic cations differentially distorted the ion binding sites, 2) the hydroxymethyl of Thr(772) rotates to stabilize bound Form(+) through water molecules, and 3) the rotamer transition is mediated by water traffic into the ion binding cavity. Accordingly, dehydration induced by osmotic stress enhanced the interaction of the congeners with the outward facing sites and profoundly modified the organization of membrane domains of the α-subunit. These results assign a catalytic role for water in pump function, and shed light on a backbone-independent but a conformation-dependent switch between H-bond and dispersion contact as part of the catalytic mechanism of the Na(+),K(+)-ATPase.


Assuntos
Amidinas/farmacologia , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA