Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815580

RESUMO

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Assuntos
Proteínas de Ciclo Celular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , RNA Fúngico/genética , RNA Interferente Pequeno/genética
2.
Mol Cell ; 63(1): 7-20, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27392145

RESUMO

In modern molecular biology, RNA has emerged as a versatile macromolecule capable of mediating an astonishing number of biological functions beyond its role as a transient messenger of genetic information. The recent discovery and functional analyses of new classes of noncoding RNAs (ncRNAs) have revealed their widespread use in many pathways, including several in the nucleus. This Review focuses on the mechanisms by which nuclear ncRNAs directly contribute to the maintenance of genome stability. We discuss how ncRNAs inhibit spurious recombination among repetitive DNA elements, repress mobilization of transposable elements (TEs), template or bridge DNA double-strand breaks (DSBs) during repair, and direct developmentally regulated genome rearrangements in some ciliates. These studies reveal an unexpected repertoire of mechanisms by which ncRNAs contribute to genome stability and even potentially fuel evolution by acting as templates for genome modification.


Assuntos
Núcleo Celular/metabolismo , Instabilidade Genômica , RNA não Traduzido/genética , Animais , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Dosagem de Genes , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/classificação , RNA não Traduzido/metabolismo , Relação Estrutura-Atividade , Telômero/genética , Telômero/metabolismo
3.
Mol Cell ; 64(6): 1088-1101, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984744

RESUMO

Quiescence (G0) is a ubiquitous stress response through which cells enter reversible dormancy, acquiring distinct properties including reduced metabolism, resistance to stress, and long life. G0 entry involves dramatic changes to chromatin and transcription of cells, but the mechanisms coordinating these processes remain poorly understood. Using the fission yeast, here, we track G0-associated chromatin and transcriptional changes temporally and show that as cells enter G0, their survival and global gene expression programs become increasingly dependent on Clr4/SUV39H, the sole histone H3 lysine 9 (H3K9) methyltransferase, and RNAi proteins. Notably, G0 entry results in RNAi-dependent H3K9 methylation of several euchromatic pockets, prior to which Argonaute1-associated small RNAs from these regions emerge. Overall, our data reveal another function for constitutive heterochromatin proteins (the establishment of the global G0 transcriptional program) and suggest that stress-induced alterations in Argonaute-associated sRNAs can target the deployment of transcriptional regulatory proteins to specific sequences.


Assuntos
Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Eucromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , RNA Interferente Pequeno/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Eucromatina/ultraestrutura , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histona-Lisina N-Metiltransferase , Histonas/genética , Histonas/metabolismo , Metiltransferases/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase de Repouso do Ciclo Celular/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA