Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Biol ; 226(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37975309

RESUMO

Sensory perception of chemical threats coming from an organism's environment relies on the coordination of numerous receptors and cell types. In many cases, the physiological processes responsible for driving behavioral responses to chemical cues are poorly understood. Here, we investigated the physiological response of fish to an unpalatable compound, formoside, which is employed as a chemical defense by marine sponges. Construction of fluorescent probe derivatives of formoside allowed visualization of this chemical defense molecule in vivo, interacting with the cells and tissues of the early larvae of a model predator, the zebrafish (Danio rerio). This revealed the precise chemosensory structures targeted by formoside to be in the taste buds and olfactory epithelium of developing zebrafish. Mechanosensory neuromasts were also targeted. This study supports the involvement of a previously identified co-receptor in detection of the chemical defense and provides a springboard for the long-term goal of identification of the cellular receptor of formoside. Extension of this approach to other predators and chemical defenses may provide insight into common mechanisms of chemoreception by predators as well as common strategies of chemical defense employed by prey.


Assuntos
Poríferos , Triterpenos , Animais , Peixe-Zebra/fisiologia , Glicosídeos/metabolismo , Triterpenos/metabolismo , Comportamento Predatório
2.
J Nat Prod ; 86(3): 574-581, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36881908

RESUMO

Tuberculosis (TB) is a dreadful infectious disease and a leading cause of mortality and morbidity worldwide, second in 2020 only to severe acute respiratory syndrome 2 (SARS-Cov-2). With limited therapeutic options available and a rise in multidrug-resistant tuberculosis cases, it is critical to develop antibiotic drugs that display novel mechanisms of action. Bioactivity-guided fractionation employing an Alamar blue assay for Mycobacterium tuberculosis strain H37Rv led to the isolation of duryne (13) from a marine sponge Petrosia sp. sampled in the Solomon Islands. Additionally, five new strongylophorine meroditerpene analogues (1-5) along with six known strongylophorines (6-12) were isolated from the bioactive fraction and characterized using MS and NMR spectroscopy, although only 13 exhibited antitubercular activity.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Petrosia , Poríferos , Animais , Petrosia/química , SARS-CoV-2 , Poríferos/química , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana
3.
J Org Chem ; 84(13): 8531-8541, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244158

RESUMO

Two sulfated diterpene glycosides featuring a highly substituted and sterically encumbered cyclopropane ring have been isolated from the marine red alga Peyssonnelia sp. Combination of a wide array of 2D NMR spectroscopic experiments, in a systematic structure elucidation workflow, revealed that peyssonnosides A-B (1-2) represent a new class of diterpene glycosides with a tetracyclo [7.5.0.01,10.05,9] tetradecane architecture. A salient feature of this workflow is the unique application of quantitative interproton distances obtained from the rotating frame Overhauser effect spectroscopy (ROESY) NMR experiment, wherein the ß-d-glucose moiety of 1 was used as an internal probe to unequivocally determine the absolute configuration, which was also supported by optical rotatory dispersion (ORD). Peyssonnoside A (1) exhibited promising activity against liver stage Plasmodium berghei and moderate antimethicillin-resistant Staphylococcus aureus (MRSA) activity, with no cytotoxicity against human keratinocytes. Additionally, 1 showed strong growth inhibition of the marine fungus Dendryphiella salina indicating an antifungal ecological role in its natural environment. The high natural abundance and novel carbon skeleton of 1 suggests a rare terpene cyclase machinery, exemplifying the chemical diversity in this phylogenetically distinct marine red alga.


Assuntos
Diterpenos/síntese química , Glicosídeos/síntese química , Rodófitas/química , Análise Espectral/métodos , Organismos Aquáticos , Modelos Moleculares , Estrutura Molecular
4.
ACS Cent Sci ; 10(1): 176-183, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38292598

RESUMO

The structural determination of natural products (NPs) can be arduous because of sample heterogeneity. This often demands iterative purification processes and characterization of complex molecules that may be available only in miniscule quantities. Microcrystal electron diffraction (microED) has recently shown promise as a method to solve crystal structures of NPs from nanogram quantities of analyte. However, its implementation in NP discovery remains hampered by sample throughput and purity requirements, akin to traditional NP-discovery workflows. In the methods described herein, we leverage the resolving power of transmission electron microscopy (TEM) and the miniaturization capabilities of deoxyribonucleic acid (DNA) microarray technology to address these challenges through the establishment of an NP screening platform, array electron diffraction (ArrayED). In this workflow, an array of high-performance liquid chromatography (HPLC) fractions taken from crude extracts was deposited onto TEM grids in picoliter-sized droplets. This multiplexing of analytes on TEM grids enables 1200 or more unique samples to be simultaneously inserted into a TEM instrument equipped with an autoloader. Selected area electron diffraction analysis of these microarrayed grids allows for the rapid identification of crystalline metabolites. In this study, ArrayED enabled structural characterization of 14 natural products, including four novel crystal structures and two novel polymorphs, from 20 crude extracts. Moreover, we identify several chemical species that would not be detected by standard mass spectrometry (MS) or ultraviolet-visible (UV/vis) spectroscopy and crystal forms that would not be characterized using traditional methods.

5.
ACS Omega ; 8(15): 13899-13910, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091395

RESUMO

Many marine algae occupy habitats that are dark, deep, or encrusted on other organisms and hence are frequently overlooked by natural product chemists. However, exploration of less-studied organisms can lead to new opportunities for drug discovery. Genetic variation at the individual, species, genus, and population levels as well as environmental influences on gene expression enable expansion of the chemical repertoire associated with a taxonomic group, enabling natural product exploration using innovative analytical methods. A nontargeted LC-MS and 1H NMR spectroscopy-based metabolomic study of 32 collections of representatives of the calcareous red algal genus Peyssonnelia from coral reef habitats in Fiji and the Solomon Islands revealed significant correlations between natural products' chemistry, phylogeny, and biomedically relevant biological activity. Hierarchical cluster analysis (HCA) of LC-MS data in conjunction with NMR profiling and MS/MS-based molecular networking revealed the presence of at least four distinct algal chemotypes within the genus Peyssonnelia. Two Fijian collections were prioritized for further analysis, leading to the isolation of three novel sulfated triterpene glycosides with a rearranged isomalabaricane carbon skeleton, guided by the metabolomic data. The discovery of peyssobaricanosides A-C (15-17) from two Fijian Peyssonnelia collections, but not from closely related specimens collected in the Solomon Islands that were otherwise chemically and phylogenetically very similar, alludes to population-level variation in secondary metabolite production. Our study reinforces the significance of exploring unusual ecological niches and showcases marine red algae as a chemically rich treasure trove.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA