RESUMO
Interleukine-1 family cytokines are key orchestrators of innate and adaptive immunity. In particular, up-regulation of IL-1R1 via its agonistic ligands consisting of IL-1ß and IL-1α is implicated in a variety of human diseases, such as rheumatoid arthritis, psoriasis, type I diabetes, amyotrophic lateral sclerosis, and dry-eye disease. Until now, there are no small-molecule inhibitors of the IL-1R1 with increased antagonistic potency to be used for the treatment of peripheral inflammation. The objective of this study was to engineer a low-molecular-weight version of IL-1RA with increased affinity and enhanced antagonistic activity for potential therapeutic use. To develop a smaller protein-ligand with a better affinity to IL-1R, we used bioinformatics studies and in silico simulations to anticipate non-binding areas on IL-1RA. In this study, we have identified a 41aa (F57-F98) non-binding site of IL-1RA. Overall RMSF of the Truncated complex (1.5 nm) was lower than the Native complex (2 nm), which could prove higher stability of the Truncated complex. The free binding energy of the T-IL-1RA (- 1087.037 kJ/mol) was significantly lower than the IL-1RA (- 836.819 kJ/mol) which could demonstrate a higher binding affinity of the truncated ligand with its receptor as a result of new important interactions. These findings have demonstrated a higher binding affinity of the T-IL-1RA with its receptor than the native protein. These results should: have an impact on the development of new treatments that block IL-1 signaling, although more research is needed in vitro and in vivo.
Assuntos
Artrite Reumatoide , Proteína Antagonista do Receptor de Interleucina 1 , Humanos , Inflamação/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Ligantes , Transdução de SinaisRESUMO
Listeriolysine-O (LLO) is a 50KDa protein responsible for Listeria monocytogenes pathogenicity. The structure of LLO (PDB ID: 4CDB) with domains D1 to D4 is known. Therefore, it is of interest to identify conserved regions among LLO variants for destabilizing oligomerization (50 mer complex) of its monomers using appropriate inhibitors. Therefore, it is of interest to identify suitable inhibitors for inhibiting LLO. Previous reports suggest the use of flavanoids like compounds for inhibiting LLO. Our interest is to identify improved compounds to destabilize LLO oligomerization. We used a library (Zinc database) containing 200,000 drug-like compounds against LLO using molecular docking based screening. This resulted in five hits that were further analyzed for pharmacological properties. The hit #1 (2-methyloctadecane- 1, 3, 4-triol) was further refined using appropriate modifications for creating a suitable pharmacophore model LLO inhibition. The modified compound (1-(4-Cyclopent-3-enyl-6, 7-dihydroxy-8-hydroxymethyl-nona-2, 8-dienylideneamino)-penta-1,4-dien-3-one) shows fitting binding properties with LLO with no undesirable pharmacological properties such as toxicity.