Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 15(31): 6418-6426, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31338513

RESUMO

The principle of encapsulation/release of a guest molecule from stimuli responsive hydrogels (SRHs) is mainly realised with pH, temperature or light stimuli. However, only a limited number of redox responsive hydrogels have been investigated so far. We report here the development of a SRH that can release its guest molecule upon a redox stimulus. To obtain this redox hydrogel, we have introduced into the hydrogel the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radical, which can be reversibly oxidized into an oxoammonium cation (TEMPO+). Water solubility is provided by the presence of the (oligoethyleneglycol)methacrylate (OEGMA) comonomer. Electrochemical and mechanical characterization showed that those gels exhibit interesting physicochemical properties, making them very promising candidates for practical use in a wide range of applications.

2.
Polymers (Basel) ; 13(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923527

RESUMO

Hydrogels have reached momentum due to their potential application in a variety of fields including their ability to deliver active molecules upon application of a specific chemical or physical stimulus and to act as easily recyclable catalysts in a green chemistry approach. In this paper, we demonstrate that the same redox-responsive hydrogels based on polymer networks containing 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) stable nitroxide radicals and oligoethylene glycol methyl ether methacrylate (OEGMA) can be successfully used either for the electrochemically triggered release of aspirin or as catalysts for the oxidation of primary alcohols into aldehydes. For the first application, we take the opportunity of the positive charges present on the oxoammonium groups of oxidized TEMPO to encapsulate negatively charged aspirin molecules. The further electrochemical reduction of oxoammonium groups into nitroxide radicals triggers the release of aspirin molecules. For the second application, our hydrogels are swelled with benzylic alcohol and tert-butyl nitrite as co-catalyst and the temperature is raised to 50 °C to start the oxidation reaction. Interestingly enough, benzaldehyde is not miscible with our hydrogels and phase-separate on top of them allowing the easy recovery of the reaction product and the recyclability of the hydrogel catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA