Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 55(5)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137751

RESUMO

Background and Objectives: Lipid-based self-nanoemulsifying drug delivery systems (SNEDDS) have resurged the eminence of nanoemulsions by modest adjustments and offer many valuable opportunities in drug delivery. Chlorpromazine, an antipsychotic agent with poor aqueous solubility-with extensive first-pass metabolism-can be a suitable candidate for the development of SNEDDS. The current study was designed to develop triglyceride-based SNEDDS of chlorpromazine to achieve improved solubility, stability, and oral bioavailability. Materials and Methods: Fifteen SNEDDS formulations of each short, medium, and long chain, triglycerides were synthesized and characterized to achieve optimized formulation. The optimized formulation was characterized for several in vitro and in vivo parameters. Results: Particle size, zeta potential, and drug loading of the optimized SNEDDS (LCT14) were found to be 178 ± 16, -21.4, and 85.5%, respectively. Long chain triglyceride (LCT14) showed a 1.5-fold increased elimination half-life (p < 0.01), up to 6-fold increased oral bioavailability, and 1.7-fold decreased plasma clearance rate (p < 0.01) compared to a drug suspension. Conclusion: The findings suggest that SNEDDS based on long-chain triglycerides (LCT14) formulations seem to be a promising alternative for improving the oral bioavailability of chlorpromazine.


Assuntos
Disponibilidade Biológica , Clorpromazina/metabolismo , Emulsificantes/metabolismo , Administração Oral , Animais , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/normas , Emulsificantes/uso terapêutico , Ratos
2.
Int J Biol Macromol ; 227: 1293-1304, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470432

RESUMO

Topical treatment of cutaneous leishmaniasis holds great promise for decreasing drug associated side effects and improving efficacy. This study was aimed to develop mannosylated thiolated chitosan-coated silver nanoparticles (MTCAg) loaded emulgel for the treatment of cutaneous leishmaniasis. MTC-Ag were synthesized via a chemical reduction method and were loaded into the emulgel. The nanoparticles had a zeta potential of +19.8 mV, an average particle size of 115 nm and a narrow polydispersity index of 0.26. In-vitro release profiles showed controlled release of silver ions from both the MTC-Ag and the emulgel-loaded MTC-Ag nanoparticles after 24 h. An ex-vivo retention study indicated 5 times higher retention of silver by the emulgel-loaded MTC-Ag than by the MTC-Ag nanoparticles. The in-vitro anti-leishmanial assay revealed that MTC-Ag had an excellent inhibitory effect on intracellular amastigotes, leading to ~90 % inhibition at the highest concentration tested. A 4-fold reduction in the IC50 value was found for MTC-Ag compared to blank Ag nanoparticles. Cytotoxicity assay showed 83 % viability of macrophages for MTC-Ag and 30 % for Ag nanoparticles at a concentration of 80 µg/mL, demonstrating the improved biocompatibility of the polymeric nanoparticles. Drug release and retention studies corroborate the great potential of MTC-Ag-loaded emulgel for the treatment of cutaneous leishmaniasis.


Assuntos
Quitosana , Leishmaniose Cutânea , Nanopartículas Metálicas , Nanopartículas , Humanos , Prata , Leishmaniose Cutânea/tratamento farmacológico , Portadores de Fármacos , Tamanho da Partícula
3.
Int J Biol Macromol ; 253(Pt 1): 126659, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660856

RESUMO

Mucopermeating nanoformulations can enhance mucosal penetration of poorly soluble drugs at their target site. In this work, thiolated chitosan (TCS)-lithocholic acid (LA) nanomicelles loaded with ß-carotene, a safe phytochemical with anticancer properties, were designed to improve the pharmaceutical and pharmacological drug profile. The TCS-LA nanomicelles were characterized by FTIR to confirm the presence of the thiol group that favors skin adhesion, and to corroborate the conjugation of hydrophobic LA with hydrophilic CS to form an amphiphilic polymer derivative. Their crystalline nature and thermal behavior were investigated by XRD and DSC analyses, respectively. According to DLS and TEM, their average size was <300 nm, and their surface charge was +27.0 mV. ß-carotene entrapment and loading efficiencies were 64 % and 58 %, respectively. In vitro mucoadhesion and ex vivo mucopenetration analyses further corroborated the potential of the nanoformulation to deliver the drug in a sustained manner under conditions mimicking cancer micro-environment. Anticancer studies in mice demonstrated that the loaded nanomicelles delayed skin cancer growth, as revealed by both morphological and biochemical parameters. Based on the results obtained herein, it can be concluded that drug-loaded TCS-LA is a novel, stable, effective and safe mucoadhesive formulation of ß-carotene for the potential treatment of skin cancer.


Assuntos
Quitosana , Nanopartículas , Neoplasias Cutâneas , Camundongos , Animais , Quitosana/química , beta Caroteno , Polímeros , Mucosa , Neoplasias Cutâneas/tratamento farmacológico , Nanopartículas/química , Microambiente Tumoral
4.
Bioengineering (Basel) ; 9(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35877371

RESUMO

Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.

5.
Colloids Surf B Biointerfaces ; 206: 111976, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34280682

RESUMO

The main objective of this study was to investigate polyethylene imine (PEI) based stereocomplexed nanomiceles for intracellular delivery of rifampicin against Mycobacterium bovis (M. bovis) and their in vitro-in vivo evaluation. The formation of Rifampicin (Rif) loaded isotactic (PEI-g-PLLA and PEI-g-PDLA) and stereocomplexed nanomicelles (StM) of PEI conjugated poly l- and poly d-lactic acid via self-assembly was thoroughly explored. Synthesis of polymer graft was confirmed via FTIR and NMR. A 2-fold reduction in CMC of StM was observed along with decreased particle size in comparison to isotactic nanomicelles. In vitro, StM exhibited a higher encapsulation efficiency and 84 % of drug release in 48 h. at pH 5 with minimal initial burst release in comparison to isotactic nanomicelles. Minimum inhibitory concentration (MIC) of StM was found to be four folds lower in contrast to isotactic nanomicelles. Ex vivo studies exhibited a better uptake of StM and minimum cytotoxicity in murine alveolar macrophages. Following oral administration in mice, drug loaded StM exhibited highest distribution in macrophage rich organs, longer half-life, AUC, AUMC and MRT in comparison to isotactic nanomicelles indicating maximum bioavailability and efficacy of StM. In vivo antimycobacterial activity also demonstrated a higher reduction (2.38fold) in M. bovis CFU at reduced dosing frequency by drug loaded StM in comparison to control group. Thus, StM can be regarded as a simple, stable, efficient, and biocompatible carrier system for delivery of rifampicin to intracellular M. bovis with added advantage of reduced dosing frequency and improved patient compliance.


Assuntos
Mycobacterium bovis , Rifampina , Animais , Portadores de Fármacos , Liberação Controlada de Fármacos , Camundongos , Micelas , Polietilenoimina , Rifampina/farmacologia
6.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922241

RESUMO

Ciprofloxacin (CIP), a potent anti-bacterial agent of the fluroquinolone family, shows poor solubility and permeability, thus leading to the development of intracellular pathogens induced multi-drug resistance and biofilms formation. To synergistically improve the biopharmaceutical parameters of CIP, a hyaluronic acid (FDA approved biocompatible polymer) functionalized self-nano emulsifying drug delivery system (HA-CIP-SNEDDS) was designed in the present study. SNEDDS formulations were tested via solubility, droplet size, zeta potential, a polydispersity index, thermodynamic stability, surface morphology, solid-state characterization, drug loading/release, cellular uptake, and biocompatibility. The final (HA-CIP-SNEDDS) formulation exhibited a mean droplet size of 50 nm with the 0.3 poly dispersity index and negative zeta potential (-11.4 mV). HA-based SNEDDS containing CIP showed an improved ability to permeate goat intestinal mucus. After 4 h, CIP-SNEDDS showed a 2-fold and HA-CIP-SNEDDS showed a 4-fold permeation enhancement as compared to the free CIP. Moreover, 80% drug release of HA-CIP-SNEDDS was demonstrated to be superior and sustained for 72 h in comparison to free CIP. However, anti-biofilm activity of HA-CIP-SNEDDS against Salmonella typhi was higher than CIP-SNEDDS and free CIP. HA-CIP-SNEDDS exhibited increased biocompatibility and improved oral pharmacokinetics as compared to free CIP. Taken together, HA-CIP-SNEDDS formulation seems to be a promising agent against Salmonella typhi with a strong targeting potential.

7.
Daru ; 28(1): 319-332, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193748

RESUMO

INTRODUCTION: Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment. METHOD: Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as 'Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis' using variety of nanocarrier systems. RESULTS: Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance. CONCLUSION: Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance. Graphical abstract.


Assuntos
Antibacterianos , Portadores de Fármacos , Farmacorresistência Bacteriana Múltipla , Nanopartículas , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Bactérias/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/química
8.
Int J Biol Macromol ; 152: 503-515, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112841

RESUMO

The present study was intended to develop a papain grafted S-protected hyaluronic acid-lithocholic acid co-block (PAP-HA-ss-LCA) polymeric excipient as an amphiphilic muco permeating stabilizer for targeting breast cancer epithelial cells overexpressed with CD44 receptors. The mucopermeating, stabilizing and targeting capability of the PAP-HA-ss-LCA polymeric excipient was investigated by manufacturing tamoxifen (TMX) loaded self-nanoemulsifying drug delivery system (SNEDDS). TMX loaded PAP-HA-ss-LCA incorporated SNEDDS (TMX-PAP-HA-ss-LCA SNEDDS) were characterized for their surface chemistry, drug release, permeation enhancement, biocompatibility and antitumor activity. FTIR spectroscopic analysis showed successful synthesis of PAP-HA-ss-LCA polymer. X-ray diffraction (XRD) showed the amorphous form of TMX inside SNEDDS. The observed hydrodynamic diameter of TMX-PAP-HA-ss-LCA SNEDDS was 367.5 nm. Furthermore, Hyaluronic Acid-based Mucoadhesive Self Nanoemulsifying Drug Delivery System (SNEDDS) of TMX showed homogeneity in synthesis with low polydispersity and negative zeta potential due to stabilization with PAP-HA-ss-LCA polymer. The distinct spherical shape of the nanodroplets was evident by transmission electron microscopy (TEM). In vitro release kinetics indicated approximately >80% release within 48 h under sink conditions. Ex-vivo permeation study displayed 7.11-folds higher permeation of TMX by TMX-PAP-HA-ss-LCA in contrast to pure TMX. The biocompatibility study proved that SNEDDS formulation was safe and compatible against macrophages. In vitro cytotoxicity studies demonstrated that TMX-PAP-HA-ss-LCA SNEDDS could efficiently kill MCF-7 breast cancer cells as compared to the native TMX drug. Systemic toxicity studies proved the non-toxic nature of TMX-PAP-HA-ss-LCA in contrast to pure TMX. Based on these evidences, TMX-PAP-HA-ss-LCA SNEDDS formulation seems to be promising mucopermeating, augmented intracellular uptake with strong targeting potential for anti-proliferative activity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Nanomedicina/métodos , Tamoxifeno/administração & dosagem , Administração Oral , Cistamina/química , Dissulfetos , Portadores de Fármacos , Desenho de Fármacos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Emulsões , Feminino , Hemólise , Humanos , Receptores de Hialuronatos/metabolismo , Concentração Inibidora 50 , Ácido Litocólico/química , Células MCF-7 , Nanopartículas/química , Tamanho da Partícula , Permeabilidade , Polímeros/química , Solubilidade , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA