RESUMO
Muon spin rotation ( &mgr;SR) has been used to measure the magnetic field distribution in the vortex state of the type-II superconductor NbSe2 ( T(c) = 7.0 K) below T = 2 K. The distribution is consistent with a highly ordered hexagonal vortex lattice with a well resolved high-field cutoff associated with the finite size of the vortex cores. The temperature dependence of the core radius is much weaker than the temperature dependence predicted from the Bogoliubov-de Gennes theory. Furthermore, the vortex radius measured by &mgr;SR near the low temperature quantum limit is about an order of magnitude larger than predicted.
RESUMO
The low temperature spin dynamics of the geometrically frustrated antiferromagnet Gd 3Ga 5O (12) (GGG) have been investigated using muon spin relaxation. No evidence for static order is seen down to a temperature of 25 mK or a few percent of the Curie-Weiss temperature. Instead there is a linear decrease in the Gd spin fluctuation rate below 1 K which extrapolates to a small but finite value of 2 GHz at zero temperature. In terms of the spin fluctuations the system appears essentially to remain dynamic at low temperatures (T>0.02 K) and magnetic fields up to 1.8 T.