Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 83(3): 635-646, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34195856

RESUMO

Phytoplankton and biotoxin monitoring programmes have been implemented in many countries to protect human health and to mitigate the impacts of harmful algal blooms (HABs) on the aquaculture industry. Several amphidomatacean species have been confirmed in Irish coastal waters, including the azaspiracid-producing species Azadinium spinosum and Amphidoma languida. Biogeographic distribution studies have been hampered by the fact that these small, armoured dinoflagellates share remarkably similar morphologies when observed by light microscopy. The recent releases of species-specific molecular detection assays have, in this context, been welcome developments. A survey of the south west and west coasts of Ireland was carried out in August 2017 to investigate the late summer distribution of toxic amphidomataceans and azaspiracid toxins. Azadinium spinosum and Am. languida were detected in 83% of samples in the southwest along the Crease Line and Bantry Bay transects between 20 and 70 m depth, with maximal cell concentrations of 7000 and 470,000 cells/L, respectively. Azaspiracid concentrations were well aligned with the distributions of Az. spinosum and Am. languida, up to 1.1 ng/L and 4.9 ng/L for combined AZA-1, -2, -33, and combined AZA-38, -39, respectively. Although a snapshot in time, this survey provides new insights in the late summer prominence of AZAs and AZA-producing species in the southwest of Ireland, where major shellfish aquaculture operations are located. Results showed a substantial overlap in the distribution of amphidomatacean species in the area and provide valuable baseline information in the context of ongoing monitoring efforts of toxigenic amphidomataceans in the region.


Assuntos
Dinoflagellida , Compostos de Espiro , Dinoflagellida/genética , Humanos , Irlanda , Toxinas Marinhas , Compostos de Espiro/análise
2.
Mar Drugs ; 18(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339248

RESUMO

Okadaic acid (OA) group toxins may accumulate in shellfish and can result in diarrhetic shellfish poisoning when consumed by humans, and are therefore regulated. Purified toxins are required for the production of certified reference materials used to accurately quantitate toxin levels in shellfish and water samples, and for other research purposes. An improved procedure was developed for the isolation of dinophysistoxin-2 (DTX2) from shellfish (M. edulis), reducing the number of purification steps from eight to five, thereby increasing recoveries to ~68%, compared to ~40% in a previously reported method, and a purity of >95%. Cell densities and toxin production were monitored in cultures of Prorocentrum lima, that produced OA, DTX1, and their esters, over ~1.5 years with maximum cell densities of ~70,000 cells mL-1 observed. Toxin accumulation progressively increased over the study period, to ~0.7 and 2.1 mg L-1 of OA and DTX1 (including their esters), respectively, providing information on appropriate harvesting times. A procedure for the purification of OA and DTX1 from the harvested biomass was developed employing four purification steps, with recoveries of ~76% and purities of >95% being achieved. Purities were confirmed by LC-HRMS, LC-UV, and NMR spectroscopy. Additional stability observations led to a better understanding of the chemistry of these toxins.


Assuntos
Toxinas Marinhas/química , Toxinas Marinhas/isolamento & purificação , Microalgas/química , Mytilus edulis/química , Ácido Okadáico/química , Ácido Okadáico/isolamento & purificação , Animais , Biomassa , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Ácido Okadáico/análogos & derivados , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
3.
Mar Drugs ; 17(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443393

RESUMO

Azaspiracids (AZAs) are microalgal toxins that can accumulate in shellfish and lead to human intoxications. To facilitate their study and subsequent biomonitoring, purification from microalgae rather than shellfish is preferable; however, challenges remain with respect to maximizing toxin yields. The impacts of temperature, growth media, and photoperiod on cell densities and toxin production in Azadinium spinosum were investigated. Final cell densities were similar at 10 and 18 °C, while toxin cell quotas were higher (~3.5-fold) at 10 °C. A comparison of culture media showed higher cell densities and AZA cell quotas (2.5-5-fold) in f10k compared to f/2 and L1 media. Photoperiod also showed differences, with lower cell densities in the 8:16 L:D treatment, while toxin cell quotas were similar for 12:12 and 8:16 L:D treatments but slightly lower for the 16:8 L:D treatment. AZA1, -2 and -33 were detected during the exponential phase, while some known and new AZAs were only detected once the stationary phase was reached. These compounds were additionally detected in field water samples during an AZA event.


Assuntos
Dinoflagellida/metabolismo , Toxinas Marinhas/biossíntese , Microalgas/metabolismo , Frutos do Mar/toxicidade , Monitoramento Biológico/métodos , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Dinoflagellida/crescimento & desenvolvimento , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Toxinas Marinhas/toxicidade , Microalgas/crescimento & desenvolvimento , Fotoperíodo , Compostos de Espiro/toxicidade , Temperatura
4.
Mar Drugs ; 17(5)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31072021

RESUMO

BACKGROUND: Azaspiracids (AZAs) are marine toxins that are produced by Azadinium and Amphidoma dinoflagellates that can contaminate edible shellfish inducing a foodborne poisoning in humans, which is characterized by gastrointestinal symptoms. Among these, AZA1, -2, and -3 are regulated in the European Union, being the most important in terms of occurrence and toxicity. In vivo studies in mice showed that, in addition to gastrointestinal effects, AZA1 induces liver alterations that are visible as a swollen organ, with the presence of hepatocellular fat droplets and vacuoles. Hence, an in vitro study was carried out to investigate the effects of AZA1, -2, and -3 on liver cells, using human non-tumor IHH hepatocytes. RESULTS: The exposure of IHH cells to AZA1, -2, or -3 (5 × 10-12-1 × 10-7 M) for 24 h did not affect the cell viability and proliferation (Sulforhodamine B assay and 3H-Thymidine incorporation assay), but they induced a significant concentration-dependent increase of mitochondrial dehydrogenases activity (MTT reduction assay). This effect depends on the activity of mitochondrial electron transport chain complex I and II, being counteracted by rotenone and tenoyl trifluoroacetone, respectively. Furthermore, AZAs-increased mitochondrial dehydrogenase activity was almost totally suppressed in the K+-, Cl--, and Na+-free media and sensitive to the specific inhibitors of KATP and hERG potassium channels, Na+/K+, ATPase, and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. CONCLUSIONS: These results suggest that AZA mitochondrial effects in hepatocytes derive from an imbalance of intracellular levels of K+ and, in particular, Cl- ions, as demonstrated by the selective reduction of toxin effects by CFTR chloride channel inhibition.


Assuntos
Furanos/toxicidade , Toxinas Marinhas/toxicidade , Mitocôndrias/efeitos dos fármacos , Oxirredutases/efeitos dos fármacos , Piranos/toxicidade , Compostos de Espiro/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloro , Citoproteção/efeitos dos fármacos , Complexo I de Transporte de Elétrons , Complexo II de Transporte de Elétrons , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mytilus edulis , Oxirredutases/metabolismo , Potássio
6.
J Nat Prod ; 81(4): 885-893, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29488755

RESUMO

Azaspiracids (AZAs) are marine biotoxins produced by the genera Azadinium and Amphidoma, pelagic marine dinoflagellates that may accumulate in shellfish resulting in human illness following consumption. The complexity of these toxins has been well documented, with more than 40 structural variants reported that are produced by dinoflagellates, result from metabolism in shellfish, or are extraction artifacts. Approximately 34 µg of a new AZA with MW 823 Da (AZA26 (3)) was isolated from blue mussels ( Mytilus edulis), and its structure determined by MS and NMR spectroscopy. AZA26, possibly a bioconversion product of AZA5, lacked the C-20-C-21 diol present in all AZAs reported thus far and had a 21,22-olefin and a keto group at C-23. Toxicological assessment of 3 using an in vitro model system based on Jurkat T lymphocyte cells showed the potency to be ∼30-fold lower than that of AZA1. The corresponding 21,22-dehydro-23-oxo-analogue of AZA10 (AZA28) and 21,22-dehydro analogues of AZA3, -4, -5, -6, -9, and -10 (AZA25, -48 (4), -60, -27, -49, and -61, respectively) were also identified by HRMS/MS, periodate cleavage reactivity, conversion from known analogues, and NMR (for 4 that was present in a partially purified sample of AZA7).


Assuntos
Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Mytilus edulis/química , Compostos de Espiro/química , Compostos de Espiro/toxicidade , Animais , Linhagem Celular , Dinoflagellida/química , Humanos , Células Jurkat , Espectroscopia de Ressonância Magnética/métodos , Frutos do Mar/toxicidade , Linfócitos T/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos
7.
Angew Chem Int Ed Engl ; 57(3): 810-813, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193497

RESUMO

The previously accepted structure of the marine toxin azaspiracid-3 is revised based upon an original convergent and stereoselective total synthesis of the natural product. The development of a structural revision hypothesis, its testing, and corroboration are reported. Synthetic (6R,10R,13R,14R,16R,17R,19S,20S,21R,24S,25S,28S,30S,32R, 33R,34R,36S,37S,39R)-azaspiracid-3 chromatographically and spectroscopically matched naturally occurring azaspiracid-3, whereas the previously assigned 20R epimer did not.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/síntese química , Furanos/química , Furanos/síntese química , Piranos/química , Piranos/síntese química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 57(3): 805-809, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193614

RESUMO

A convergent and stereoselective total synthesis of the previously assigned structure of azaspiracid-3 has been achieved by a late-stage Nozaki-Hiyama-Kishi coupling to form the C21-C22 bond with the C20 configuration unambiguously established from l-(+)-tartaric acid. Postcoupling steps involved oxidation to an ynone, modified Stryker reduction of the alkyne, global deprotection, and oxidation of the resulting C1 primary alcohol to the carboxylic acid. The synthetic product matched naturally occurring azaspiracid-3 by mass spectrometry, but differed both chromatographically and spectroscopically.


Assuntos
Produtos Biológicos/química , Furanos/síntese química , Piranos/síntese química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida , Furanos/química , Estrutura Molecular , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Piranos/química , Estereoisomerismo , Espectrometria de Massas em Tandem
9.
Mar Drugs ; 13(11): 6687-702, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26528990

RESUMO

Two strains of Azadinium poporum, one from the Korean West coast and the other from the North Sea, were mass cultured for isolation of new azaspiracids. Approximately 0.9 mg of pure AZA-36 (1) and 1.3 mg of pure AZA-37 (2) were isolated from the Korean (870 L) and North Sea (120 L) strains, respectively. The structures were determined to be 3-hydroxy-8-methyl-39-demethyl-azaspiracid-1 (1) and 3-hydroxy-7,8-dihydro-39-demethyl-azaspiracid-1 (2) by ¹H- and (13)C-NMR. Using the Jurkat T lymphocyte cell toxicity assay, (1) and (2) were found to be 6- and 3-fold less toxic than AZA-1, respectively.


Assuntos
Dinoflagellida/metabolismo , Toxinas Marinhas/isolamento & purificação , Compostos de Espiro/isolamento & purificação , Humanos , Células Jurkat , Leucemia de Células T/metabolismo , Espectroscopia de Ressonância Magnética , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , República da Coreia , Especificidade da Espécie , Compostos de Espiro/química , Compostos de Espiro/toxicidade , Testes de Toxicidade
10.
Chem Res Toxicol ; 27(4): 587-600, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24506502

RESUMO

Since azaspiracid-1 (AZA1) was identified in 1998, the number of AZA analogues has increased to over 30. The development of an LC-MS method using a neutral mobile phase led to the discovery of isomers of AZA1, AZA2, and AZA3, present at ~2-16% of the parent analogues in phytoplankton and shellfish samples. Under acidic mobile phase conditions, isomers and their parents are not separated. Stability studies showed that these isomers were spontaneous epimerization products whose formation is accelerated with the application of heat. The AZA1 isomer was isolated from contaminated shellfish and identified as 37-epi-AZA1 by nuclear magnetic resonance (NMR) spectroscopy and chemical analyses. Similar analysis indicated that the isomers of AZA2 and AZA3 corresponded to 37-epi-AZA2 and 37-epi-AZA3, respectively. The 37-epimers were found to exist in equilibrium with the parent compounds in solution. 37-epi-AZA1 was quantitated by NMR, and relative molar response studies were performed to determine the potential differences in LC-MS response of AZA1 and 37-epi-AZA1. Toxicological effects were determined using Jurkat T lymphocyte cells as an in vitro cell model. Cytotoxicity experiments employing a metabolically based dye (i.e., MTS) indicated that 37-epi-AZA1 elicited a lethal response that was both concentration- and time-dependent, with EC50 values in the subnanomolar range. On the basis of EC50 comparisons, 37-epi-AZA1 was 5.1-fold more potent than AZA1. This data suggests that the presence of these epimers in seafood products should be considered in the analysis of AZAs for regulatory purposes.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Toxinas Marinhas/isolamento & purificação , Compostos de Espiro/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Humanos , Técnicas In Vitro , Isomerismo , Células Jurkat , Espectroscopia de Ressonância Magnética , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Estrutura Molecular , Frutos do Mar/análise , Compostos de Espiro/química , Compostos de Espiro/toxicidade
11.
J Nat Prod ; 77(11): 2465-74, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25356854

RESUMO

We identified three new azaspiracids (AZAs) with molecular weights of 715, 815, and 829 (AZA33 (3), AZA34 (4), and AZA35, respectively) in mussels, seawater, and Azadinium spinosum culture. Approximately 700 µg of 3 and 250 µg of 4 were isolated from a bulk culture of A. spinosum, and their structures determined by MS and NMR spectroscopy. These compounds differ significantly at the carboxyl end of the molecule from known AZA analogues and therefore provide valuable information on structure-activity relationships. Initial toxicological assessment was performed using an in vitro model system based on Jurkat T lymphocyte cytotoxicity, and the potencies of 3 and 4 were found to be 0.22- and 5.5-fold that of AZA1 (1), respectively. Thus, major changes in the carboxyl end of 1 resulted in significant changes in toxicity. In mussel extracts, 3 was detected at low levels, whereas 4 and AZA35 were detected only at extremely low levels or not at all. The structures of 3 and 4 are consistent with AZAs being biosynthetically assembled from the amino end.


Assuntos
Dinoflagellida/química , Células Jurkat/efeitos dos fármacos , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/farmacologia , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/farmacologia , Humanos , Toxinas Marinhas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos de Espiro/química , Relação Estrutura-Atividade
12.
Harmful Algae ; 124: 102388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164556

RESUMO

To date, the putative shellfish toxin azaspiracid 59 (AZA-59) produced by Azadinium poporum (Dinophyceae) has been the only AZA found in isolates from the Pacific Northwest coast of the USA (Northeast Pacific Ocean). Anecdotal reports of sporadic diarrhetic shellfish poisoning-like illness, with the absence of DSP toxin or Vibrio contamination, led to efforts to look for other potential toxins, such as AZAs, in water and shellfish from the region. A. poporum was found in Puget Sound and the outer coast of Washington State, USA, and a novel AZA (putative AZA-59) was detected in low quantities in SPATT resins and shellfish. Here, an A. poporum strain from Puget Sound was mass-cultured and AZA-59 was subsequently purified and structurally characterized. In vitro cytotoxicity of AZA-59 towards Jurkat T lymphocytes and acute intraperitoneal toxicity in mice in comparison to AZA-1 allowed the derivation of a provisional toxicity equivalency factor of 0.8 for AZA-59. Quantification of AZA-59 using ELISA and LC-MS/MS yielded reasonable quantitative results when AZA-1 was used as an external reference standard. This study assesses the toxic potency of AZA-59 and will inform guidelines for its potential monitoring in case of increasing toxin levels in edible shellfish.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Camundongos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Frutos do Mar/análise , Dinoflagellida/química , Washington
13.
Chem Res Toxicol ; 25(3): 747-54, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22375692

RESUMO

Azaspiracids (AZA) are polyether marine toxins of dinoflagellate origin that accumulate in shellfish and represent an emerging human health risk. Although monitored and regulated in many European and Asian countries, there are no monitoring programs or regulatory requirements in the United States for this toxin group. This did not prove to be a problem until June 2009 when AZAs were identified in US seafood for the first time resulting in human intoxications and further expanding their global distribution. Efforts are now underway in several laboratories to better define the effects and mechanism(s) of action for the AZAs. Our investigations have employed Jurkat T lymphocyte cells as an in vitro model to characterize the toxicological effects of AZA1, AZA2, and AZA3. Cytotoxicity experiments employing a metabolically based dye (i.e., MTS) indicated that AZA1, AZA2, and AZA3 each elicited a lethal response that was both concentration- and time-dependent, with EC(50) values in the sub- to low nanomolar range. On the basis of EC(50) comparisons, the order of potency was as follows: AZA2 > AZA3 > AZA1, with toxic equivalence factors (TEFs) relative to AZA1 of 8.3-fold and 4.5-fold greater for AZA2 and AZA3, respectively. Image analysis of exposed cells using Nomarski differential interference contrast (DIC) imaging and fluorescent imaging of cellular actin indicated that the morphological effects of AZA1 on this cell type are unique relative to the effects of AZA2 and AZA3. Collectively, our data support the growing body of evidence suggesting that natural analogues of AZA are highly potent and that they may have multiple molecular targets.


Assuntos
Furanos/toxicidade , Toxinas Marinhas/toxicidade , Piranos/toxicidade , Compostos de Espiro/toxicidade , Linfócitos T/efeitos dos fármacos , Actinas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Dinoflagellida , Humanos , Células Jurkat , Mytilus edulis , Pseudópodes/efeitos dos fármacos , Pseudópodes/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia
14.
Anal Bioanal Chem ; 403(3): 833-46, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22367288

RESUMO

Azaspiracids (AZAs) are secondary metabolites of Azadinium spinosum that can accumulate in shellfish and cause food poisoning when consumed. We describe here an analytical procedure for the determination of AZAs in cultures of A. spinosum with a focus on the formation of AZA methyl esters as artefacts during extraction and sample pre-treatment. A. spinosum cells were collected from bioreactor cultures using centrifugation or filtration. Different extraction procedures were evaluated for formation of methyl ester artefacts, yield, and matrix effects. Filtration of cultures using glass-fibre filters led to increased formation of methyl esters, and centrifugation is recommended for recovery of cells. The extraction solvent (methanol (MeOH), acetone, and acetonitrile (MeCN)) did not significantly affect the yield of AZAs as long as the organic content was 80% or higher. However, the use of MeOH as extraction solvent led to increased formation of methyl esters. AZA1 recovery over two successive extractions was 100% at the 95% confidence level for acetone and MeOH. In standard-addition experiments, no significant matrix effects were observed in extracts of A. spinosum or Azadinium obesum up to a sample size of 4.5 × 10(9) µm(3). Moreover, experiments carried out to clarify the formation and structure of methylated AZA analogues led to the description of two AZA methyl esters and to the correction of the chemical structures of AZAs29-32.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/análise , Compostos de Espiro/análise , Acetona , Acetonitrilas , Animais , Cromatografia Líquida de Alta Pressão , Solventes , Espectrometria de Massas em Tandem
15.
Mar Drugs ; 10(6): 1360-1382, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22822378

RESUMO

Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell · mL(-1) at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day(-1), with optimum toxin production at 0.25 day(-1). After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Dinoflagellida/química , Toxinas Marinhas/isolamento & purificação , Compostos de Espiro/isolamento & purificação , Toxinas Biológicas/isolamento & purificação , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Toxinas Marinhas/biossíntese , Fotobiorreatores , Extração em Fase Sólida/métodos , Toxinas Biológicas/biossíntese
16.
Artigo em Inglês | MEDLINE | ID: mdl-35839625

RESUMO

The presence of azaspiracids (AZAs) in shellfish may cause food poisoning in humans. AZAs can accumulate in shellfish filtering seawater that contains marine dinoflagellates such as Azadinium and Amphidoma spp. More than 60 AZA analogues have been identified, of which AZA1, AZA2 and AZA3 are regulated in Europe. Shellfish matrices may complicate quantitation by ELISA and LC-MS methods. Polyclonal antibodies have been developed that bind specifically to the C-26-C-40 domain of the AZA structure and could potentially be used for selectively extracting compounds containing this substructure. This includes almost all known analogues of AZAs, including AZA1, AZA2 and AZA3. Here we report preparation of immunoaffinity chromatography (IAC) columns for clean-up and concentration of AZAs. The IAC columns were prepared by coupling polyclonal anti-AZA IgG to CNBr-activated sepharose. The columns were evaluated using shellfish extracts, and the resulting fractions were analyzed by ELISA and LC-MS. The columns selectively bound over 300 ng AZAs per mL of gel without significant leakage, and did not retain the okadaic acid, cyclic imine, pectenotoxin and yessotoxin analogues that were present in the applied samples. Furthermore, 90-92% of the AZAs were recovered by elution with 90% MeOH, and the columns could be re-used without significant loss of performance.


Assuntos
Dinoflagellida , Compostos de Espiro , Cromatografia Líquida , Humanos , Toxinas Marinhas/química , Frutos do Mar/análise , Compostos de Espiro/química
17.
J Agric Food Chem ; 69(38): 11322-11335, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533950

RESUMO

Azaspiracids (AZAs) are a group of biotoxins produced by the marine dinoflagellates Azadinium and Amphidoma spp. that can accumulate in shellfish and cause food poisoning in humans. Of the 60 AZAs identified, levels of AZA1, AZA2, and AZA3 are regulated in shellfish as a food safety measure based on occurrence and toxicity. Information about the metabolism of AZAs in shellfish is limited. Therefore, a fraction of blue mussel hepatopancreas was made to study the metabolism of AZA1-3 in vitro. A range of AZA metabolites were detected by liquid chromatography-high-resolution tandem mass spectrometry analysis, most notably the novel 22α-hydroxymethylAZAs AZA65 and AZA66, which were also detected in naturally contaminated mussels. These appear to be the first intermediates in the metabolic conversion of AZA1 and AZA2 to their corresponding 22α-carboxyAZAs (AZA17 and AZA19). α-Hydroxylation at C-23 was also a prominent metabolic pathway, producing AZA8, AZA12, and AZA5 as major metabolites of AZA1-3, respectively, and AZA67 and AZA68 as minor metabolites via double-hydroxylation of AZA1 and AZA2, but only low levels of 3ß-hydroxylation were observed in this study. In vitro generation of algal toxin metabolites, such as AZA3, AZA5, AZA6, AZA8, AZA12, AZA17, AZA19, AZA65, and AZA66 that would otherwise have to be laboriously purified from shellfish, has the potential to be used for the production of standards for analytical and toxicological studies.


Assuntos
Mytilus edulis , Compostos de Espiro , Animais , Humanos , Toxinas Marinhas , Frutos do Mar/análise
18.
Toxins (Basel) ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34437381

RESUMO

Two high-mass polar compounds were observed in aqueous side-fractions from the purification of okadaic acid (1) and dinophysistoxin-2 (2) from Dinophysis blooms in Spain and Norway. These were isolated and shown to be 24-O-ß-d-glucosides of 1 and 2 (4 and 5, respectively) by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and enzymatic hydrolysis. These, together with standards of 1, 2, dinophysistoxin-1 (3), and a synthetic specimen of 7-deoxy-1 (7), combined with an understanding of their mass spectrometric fragmentation patterns, were then used to identify 1-5, the 24-O-ß-d-glucoside of dinophysistoxin-1 (6), 7, 7-deoxy-2 (8), and 7-deoxy-3 (9) in a range of extracts from Dinophysis blooms, Dinophysis cultures, and contaminated shellfish from Spain, Norway, Ireland, Canada, and New Zealand. A range of Prorocentrum lima cultures was also examined by liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) and was found to contain 1, 3, 7, and 9. However, although 4-6 were not detected in these cultures, low levels of putative glycosides with the same exact masses as 4 and 6 were present. The potential implications of these findings for the toxicology, metabolism, and biosynthesis of the okadaic acid group of marine biotoxins are briefly discussed.


Assuntos
Bivalves/química , Dinoflagellida , Glicosídeos/análise , Ácido Okadáico/análogos & derivados , Ácido Okadáico/análise , Frutos do Mar/análise , Animais , Australásia , Monitoramento Biológico , Europa (Continente) , Contaminação de Alimentos/análise , Glicosídeos/química , América do Norte , Ácido Okadáico/química
19.
PLoS One ; 15(6): e0235015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559229

RESUMO

Representatives of the marine dinophyte family Amphidomataceae produce lipophilic phycotoxins called azaspiracids (AZA) which may cause azaspiracid shellfish poisoning (AZP) in humans after consumption of contaminated seafood. Three of the four known toxigenic species are observed frequently in the eastern North Atlantic. In 2018, a research survey was performed to strengthen knowledge on the distribution and abundance of toxigenic Amphidomataceae and their respective toxins in Irish coastal waters and in the North Sea. Species-specific quantification of the three toxigenic species (Azadinium spinosum, Azadinium poporum and Amphidoma languida) was based on recently developed qPCR assays, whose performance was successfully validated and tested with specificity tests and spike experiments. The multi-method approach of on-board live microscopy, qPCR assays and chemical AZA-analysis revealed the presence of Amphidomataceae in the North Atlantic including the three targeted toxigenic species and their respective AZA analogues (AZA-1, -2, -33, -38, -39). Azadinium spinosum was detected at the majority of Irish stations with a peak density of 8.3 x 104 cells L-1 and AZA (AZA-1, -2, -33) abundances up to 1,274 pg L-1. Amphidoma languida was also present at most Irish stations but appeared in highest abundance in a bloom at a central North Sea station with a density of 1.2 x 105 cells L-1 and an AZA (AZA-38, -39) abundances of 618 pg L-1. Azadinium poporum was detected sporadically at the Irish south coast and North Sea and was rather low in abundance during this study. The results confirmed the wide distribution and frequent occurrence of the target species in the North Atlantic area and revealed, for the first time, bloom abundances of toxigenic Amphidomataceae in this area. This emphasizes the importance of future studies and monitoring of amphidomatacean species and their respective AZA analogues in the North Atlantic.


Assuntos
Biomassa , Dinoflagellida/fisiologia , Toxinas Marinhas/análise , Compostos de Espiro/análise , Dinoflagellida/metabolismo , Toxinas Marinhas/metabolismo , Mar do Norte , Água do Mar/química , Compostos de Espiro/metabolismo
20.
J Agric Food Chem ; 67(8): 2369-2376, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30763083

RESUMO

Azaspiracids (AZAs) are a group of biotoxins that appear periodically in shellfish and can cause food poisoning in humans. Current methods for quantifying the regulated AZAs are restricted to LC-MS but are not well suited to detecting novel and unregulated AZAs. An ELISA method for total AZAs in shellfish was reported recently, but unfortunately, it used relatively large amounts of the AZA-1-containing plate-coating conjugate, consuming significant amounts of pure AZA-1 per assay. Therefore, a new plate-coater, OVA-cdiAZA1 was produced, resulting in an ELISA with a working range of 0.30-4.1 ng/mL and a limit of quantification of 37 µg/kg for AZA-1 in shellfish. This ELISA was nearly twice as sensitive as the previous ELISA while using 5-fold less plate-coater. The new ELISA displayed broad cross-reactivity toward AZAs, detecting all available quantitative AZA reference materials as well as the precursors to AZA-3 and AZA-6, and results from shellfish analyzed with the new ELISA showed excellent correlation ( R2 = 0.99) with total AZA-1-10 by LC-MS. The results suggest that the new ELISA is suitable for screening samples for total AZAs, even in cases where novel AZAs are present and regulated AZAs are absent, such as was reported recently from Puget Sound and the Bay of Naples.


Assuntos
Bivalves/química , Ensaio de Imunoadsorção Enzimática/métodos , Toxinas Marinhas/análise , Frutos do Mar/análise , Compostos de Espiro/análise , Animais , Antígenos/análise , Ensaio de Imunoadsorção Enzimática/instrumentação , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA