Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554189

RESUMO

Class III receptor tyrosine kinase (RTK) inhibitors targeting mainly FLT3 or c-KIT have not been well studied in lung cancer. To identify a small molecule potentially targeting class III RTK, we synthesized novel small molecule compounds and identified 5-(4-bromophenyl)-N-(naphthalen-1-yl) oxazol-2-amine (AIU2001) as a novel class III RKT inhibitor. In an in vitro kinase profiling assay, AIU2001 inhibited the activities of FLT3, mutated FLT3, FLT4, and c-KIT of class III RTK, and the proliferation of NSCLC cells in vitro and in vivo. AIU2001 induced DNA damage, reactive oxygen species (ROS) generation, and cell cycle arrest in the G2/M phase. Furthermore, AIU2001 suppressed the DNA damage repair genes, resulting in the 'BRCAness'/'DNA-PKness' phenotype. The mRNA expression level of STAT5 was downregulated by AIU2001 treatment and knockdown of STAT5 inhibited the DNA repair genes. Our results show that compared to either drug alone, the combination of AIU2001 with a poly (ADP-ribose) polymerase (PARP) inhibitor olaparib or irradiation showed synergistic efficacy in H1299 and A549 cells. Hence, our findings demonstrate that AIU2001 is a candidate therapeutic agent for NSCLC and combination therapies with AIU2001 and a PARP inhibitor or radiotherapy may be used to increase the therapeutic efficacy of AIU2001 due to inhibition of DNA damage repair.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares , Camundongos , Estrutura Molecular , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Microbiol Biotechnol ; 32(12): 1583-1588, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453076

RESUMO

In this study, we investigated the effect of lactic acid bacteria (LAB) strains used as starters for kimchi fermentation, namely Lactococcus lactis WiKim0124, Companilactobacillus allii WiKim39, Leuconostoc mesenteroides WiKim0121 Leuconostoc mesenteroides WiKim33, and Leuconostoc mesenteroides WiKim32, on the intestinal epithelial tight junctions (TJs). These LAB strains were not cytotoxic to Caco-2 cells at 500 µg/ml concentration. In addition, hydrogen peroxide (H2O2) decreased Caco-2 viability, but the LAB strains protected the cells against H2O2-induced cytotoxicity. We also found that lipopolysaccharide (LPS) promoted Caco-2 proliferation; however, no specific changes were observed upon treatment with LAB strains and LPS. Our evaluation of the permeability in the Caco-2 monolayer model confirmed its increase by both LPS and H2O2. The LAB strains inhibited the increase in permeability by protecting TJs, which we evaluated by measuring TJ proteins such as zonula occludens-1 and occludin, and analyzing them by western blotting and immunofluorescence staining. Our findings show that LAB strains used for kimchi fermentation can suppress the increase in intestinal permeability due to LPS and H2O2 by protecting TJs. Therefore, these results suggest the possibility of enhancing the functionality of kimchi through its fermentation using functional LAB strains.


Assuntos
Alimentos Fermentados , Lactobacillales , Humanos , Fermentação , Junções Íntimas , Células CACO-2 , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos , Alimentos Fermentados/microbiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-26379749

RESUMO

The primo vascular system (PVS), floating in lymph ducts, was too transparent to be observed by using a stereomicroscope. It was only detectable with the aid of staining dyes, for instance, Alcian blue, which was injected into the lymph nodes. Some dyes were absorbed preferentially by the PVS than the lymph wall. It remains a standing problem to know what dyes are absorbed better by the PVS than the lymph walls. Such information would be useful to unravel the biochemical properties of the PVS that are badly in need for obtaining large amount of PVS specimens. In the current work we tried two other familiar dyes which were used in PVS research before. We found that Trypan blue and toluidine blue did not visualize the PVS. Trypan blue was cleared by the natural washing. Toluidine blue did not stain the PVS, but it did leave stained spots in the lymph wall and its surrounding tissues, and it leaked out of the lymph wall to stain surrounding connective tissues. These completely different behaviors of the three dyes were found for the first time in the current work and provide valuable information to elucidate the mechanism through which some special dyes stained the PVS preferentially compared to the lymphatic wall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA