RESUMO
The ability to generate visceral sensory neurons (VSN) from induced pluripotent stem (iPS) cells may help to gain insights into how the gut-nerve-brain axis is involved in neurological disorders. We established a protocol to differentiate human iPS-cell-derived visceral sensory ganglion organoids (VSGOs). VSGOs exhibit canonical VSN markers, and single-cell RNA sequencing revealed heterogenous molecular signatures and developmental trajectories of VSGOs aligned with native VSN. We integrated VSGOs with human colon organoids on a microfluidic device and applied this axis-on-a-chip model to Alzheimer's disease. Our results suggest that VSN could be a potential mediator for propagating gut-derived amyloid and tau to the brain in an APOE4- and LRP1-dependent manner. Furthermore, our approach was extended to include patient-derived iPS cells, which demonstrated a strong correlation with clinical data.
RESUMO
BACKGROUND: Molecular analysis of advanced tumors can increase tumor heterogeneity and selection bias. We developed a robust prognostic signature for gastric cancer by comparing RNA expression between very rare early gastric cancers invading only mucosal layer (mEGCs) with lymph node metastasis (Npos) and those without metastasis (Nneg). METHODS: Out of 1003 mEGCs, all Npos were matched to Nneg using propensity scores. Machine learning approach comparing Npos and Nneg was used to develop prognostic signature. The function and robustness of prognostic signature was validated using cell lines and external datasets. RESULTS: Extensive machine learning with cross-validation identified the prognostic classifier consisting of four overexpressed genes (HDAC5, NPM1, DTX3, and PPP3R1) and two downregulated genes (MED12 and TP53), and enabled us to develop the risk score predicting poor prognosis. Cell lines engineered to high-risk score showed increased invasion, migration, and resistance to 5-FU and Oxaliplatin but maintained sensitivity to an HDAC inhibitor. Mouse models after tail vein injection of cell lines with high-risk score revealed increased metastasis. In three external cohorts, our risk score was identified as the independent prognostic factor for overall and recurrence-free survival. CONCLUSION: The risk score from the 6-gene classifier can successfully predict the prognosis of gastric cancer.
Assuntos
Biomarcadores Tumorais , Mucosa Gástrica , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/mortalidade , Humanos , Prognóstico , Animais , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Metástase Linfática/genética , Feminino , Masculino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Fragmentomics, the investigation of fragmentation patterns of cell-free DNA (cfDNA), has emerged as a promising strategy for the early detection of multiple cancers in the field of liquid biopsy. However, the clinical application of this approach has been hindered by a limited understanding of cfDNA biology. Furthermore, the prevalence of hematopoietic cell-derived cfDNA in plasma complicates the in vivo investigation of tissue-specific cfDNA other than that of hematopoietic origin. While conventional two-dimensional cell lines have contributed to research on cfDNA biology, their limited representation of in vivo tissue contexts underscores the need for more robust models. In this study, we propose three-dimensional organoids as a novel in vitro model for studying cfDNA biology, focusing on multifaceted fragmentomic analyses. RESULTS: We established nine patient-derived organoid lines from normal lung airway, normal gastric, and gastric cancer tissues. We then extracted cfDNA from the culture medium of these organoids in both proliferative and apoptotic states. Using whole-genome sequencing data from cfDNA, we analyzed various fragmentomic features, including fragment size, footprints, end motifs, and repeat types at the end. The distribution of cfDNA fragment sizes in organoids, especially in apoptosis samples, was similar to that found in plasma, implying occupancy by mononucleosomes. The footprints determined by sequencing depth exhibited distinct patterns depending on fragment sizes, reflecting occupancy by a variety of DNA-binding proteins. Notably, we discovered that short fragments (< 118 bp) were exclusively enriched in the proliferative state and exhibited distinct fragmentomic profiles, characterized by 3 bp palindromic end motifs and specific repeats. CONCLUSIONS: In conclusion, our results highlight the utility of in vitro organoid models as a valuable tool for studying cfDNA biology and its associated fragmentation patterns. This, in turn, will pave the way for further enhancements in noninvasive cancer detection methodologies based on fragmentomics.
Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias/genética , Biópsia Líquida , Sequenciamento Completo do Genoma , Linhagem Celular , Biomarcadores Tumorais/genéticaRESUMO
BACKGROUND AND PURPOSE: Genome-wide association studies (GWAS) of metabolic syndrome (MetS) have predominantly focused on non-Asian populations, with limited representation from East Asian cohorts. Moreover, previous GWAS analyses have primarily emphasized the significance of top single nucleotide polymorphisms (SNPs), poorly explaining other SNP signals in linkage disequilibrium. This study aimed to reveal the interaction between rs651821 and rs2266788, the principal variants of apolipoprotein A5 (APOA5), within the most significant loci identified through GWAS on MetS. METHODS: GWAS on MetS and its components was conducted using the data from the Korean Genome and Epidemiology Study (KoGES) city cohort comprising 58,600 individuals with available biochemical, demographic, lifestyle factors, and the most significant APOA5 locus was analyzed further in depth. RESULTS: According to GWAS of MetS and its diagnostic components, a significant association between the APOA5 SNPs rs651821/rs2266788 and MetS/triglycerides/high-density lipoprotein phenotypes was revealed. However, a conditional analysis employing rs651821 unveiled a reversal in the odds ratio for rs2266788. Therefore, rs651821 and rs2266788 emerged as independent and opposing signals in the extended GWAS analysis, i.e., the multilayered effects. Further gene-environment interaction analyses regarding lifestyle factors such as smoking, alcohol consumption, and physical activity underscored these multilayered effects. CONCLUSION: This study unveils the intricate interplay between rs651821 and rs2266788 derived from MetS GWAS. Removing the influence of lead SNP reveals an independent protective signal associated with rs2266788, suggesting a multilayered effect between these SNPs. These findings underline the need for novel perspectives in future MetS GWAS.
Assuntos
Apolipoproteína A-V , Estudo de Associação Genômica Ampla , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Apolipoproteína A-V/genética , Síndrome Metabólica/genética , Masculino , Pessoa de Meia-Idade , Feminino , República da Coreia/epidemiologia , Povo Asiático/genética , Predisposição Genética para Doença , Desequilíbrio de Ligação , Adulto , Idoso , Triglicerídeos/sangue , Lipoproteínas HDL/genética , População do Leste AsiáticoRESUMO
BACKGROUND: Malignant phyllodes tumour (MPT) is a rare breast malignancy with epithelial and mesenchymal features. Currently, there are no appropriate research models or effective targeted therapeutic approaches for MPT. METHODS: We collected fresh frozen tissues from nine patients with MPT and performed whole-exome and RNA sequencing. Additionally, we established patient-derived xenograft (PDX) models from patients with MPT and tested the efficacy of targeting dysregulated pathways in MPT using the PDX model from one MPT. RESULTS: MPT has unique molecular characteristics when compared to breast cancers of epithelial origin and can be classified into two groups. The PDX model derived from one patient with MPT showed that the mouse epithelial component increased during tumour growth. Moreover, targeted inhibition of platelet-derived growth factor receptor (PDGFR) and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) by imatinib mesylate and PKI-587 showed in vivo tumour suppression effects. CONCLUSIONS: This study revealed the molecular profiles of MPT that can lead to molecular classification and potential targeted therapy, and suggested that the MPT PDX model can be a useful tool for studying the pathogenesis of fibroepithelial neoplasms and for preclinical drug screening to find new therapeutic strategies for MPT.
Assuntos
Neoplasias da Mama , Neoplasias Fibroepiteliais , Tumor Filoide , Humanos , Animais , Camundongos , Feminino , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Mesilato de Imatinib , Neoplasias da Mama/patologia , Tumor Filoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , MamíferosRESUMO
Insulin is a crucial signalling molecule that primarily functions to reduce blood glucose levels through cellular uptake of glucose. In addition to its role in glucose homeostasis, insulin has been shown to regulate cell proliferation. Specifically, insulin enhances the phosphorylation of pyruvate dehydrogenase E1α (PDHA1) at the Ser293 residue and promotes the proliferation of HepG2 hepatocellular carcinoma cells. Furthermore, we previously observed that p-Ser293 PDHA1 bound with pyruvate kinase M2 (PKM2) as confirmed by coimmunoprecipitation. In this study, we used an in silico analysis to predict the structural conformation of the two binding proteins. However, the function of the protein complex remained unclear. To investigate further, we treated cells with si-PDHA1 and si-PKM2, which led to a reduction in PKM2 and p-Ser293 PDHA1 levels, respectively. Additionally, we found that the PDHA S293A dephospho-mimic reduced PKM2 levels and its associated enzyme activity. Treatment with MG132 and leupeptin impeded the PDHA1 S293A-mediated PKM2 reduction. These results suggest that the association between p-PDHA1 and PKM2 promotes their stability and protects them from protein degradation. Of interest, we observed that p-PDHA1 and PKM2 were localized in the nucleus in liver cancer patients. Under insulin stimulation, the knockdown of both PDHA1 and PKM2 led to a reduction in the expression of common genes, including KDMB1. These findings suggest that p-PDHA1 and PKM2 play a regulatory role in these proteins' expression and induce tumorigenesis in response to insulin.
RESUMO
BACKGROUND: Although single-cell RNA sequencing of xenograft samples has been widely used, no comprehensive bioinformatics pipeline is available for human and mouse mixed single-cell analyses. Considering the numerous homologous genes across the human and mouse genomes, misalignment errors should be evaluated, and a new algorithm is required. We assessed the extents and effects of misalignment errors and exonic multi-mapping events when using human and mouse combined reference data and developed a new bioinformatics pipeline with expression-based species deconvolution to minimize errors. We also evaluated false-positive signals presumed to originate from ambient RNA of the other species and address the importance to computationally remove them. RESULT: Error when using combined reference account for an average of 0.78% of total reads, but such reads were concentrated to few genes that were greatly affected. Human and mouse mixed single-cell data, analyzed using our pipeline, clustered well with unmixed data and showed higher k-nearest-neighbor batch effect test and Local Inverse Simpson's Index scores than those derived from Cell Ranger (10 × Genomics). We also applied our pipeline to multispecies multisample single-cell library containing breast cancer xenograft tissue and successfully identified all samples using genomic array and expression. Moreover, diverse cell types in the tumor microenvironment were well captured. CONCLUSION: We present our bioinformatics pipeline for mixed human and mouse single-cell data, which can also be applied to pooled libraries to obtain cost-effective single-cell data. We also address misalignment, multi-mapping error, and ambient RNA as a major consideration points when analyzing multispecies single-cell data.
Assuntos
Biologia Computacional , Genoma , Algoritmos , Animais , Genômica , Humanos , Camundongos , RNARESUMO
OBJECTIVE: To investigate the molecular characteristics of AGEJ compared with EAC and gastric adenocarcinoma. SUMMARY OF BACKGROUND DATA: Classification of AGEJ based on differential molecular characteristics between EAC and gastric adenocarcinoma has been long-standing controversy but rarely conducted due to anatomical ambiguity and epidemiologic difference. METHODS: The molecular classification model with Bayesian compound covariate predictor was developed based on differential mRNA expression of EAC (N = 78) and GCFB (N = 102) from the Cancer Genome Atlas (TCGA) cohort. AGEJ/cardia (N = 48) in TCGA cohort and AGEJ/upper third GC (N = 46 pairs) in Seoul National University cohort were classified into the EAC-like or GCFB-like groups whose genomic, transcriptomic, and proteomic characteristics were compared. RESULTS: AGEJ in both cohorts was similarly classified as EAC-like (31.2%) or GCFB-like (68.8%) based on the 400-gene classifier. The GCFB-like group showed significantly activated phosphoinositide 3-kinase-AKT signaling with decreased expression of ERBB2. The EAC-like group presented significantly different alternative splicing including the skipped exon of RPS24, a significantly higher copy number amplification including ERBB2 amplification, and increased protein expression of ERBB2 and EGFR compared with GCFB-like group. High-throughput 3D drug test using independent cell lines revealed that the EAC-like group showed a significantly better response to lapatinib than the GCFB-like group (P = 0.015). CONCLUSIONS: AGEJ was the combined entity of the EAC-like and GCFB-like groups with consistently different molecular characteristics in both Seoul National University and TCGA cohorts. The EAC-like group with a high Bayesian compound covariate predictor score could be effectively targeted by dual inhibition of ERBB2 and EGFR.
Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Teorema de Bayes , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/patologia , Humanos , Fosfatidilinositol 3-Quinases , Proteômica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologiaRESUMO
BACKGROUND: Although FDG-PET is widely used in cancer, its role in gastric cancer (GC) is still controversial due to variable [18F]fluorodeoxyglucose ([18F]FDG) uptake. Here, we sought to develop a genetic signature to predict high FDG-avid GC to plan individualized PET and investigate the molecular landscape of GC and its association with glucose metabolic profiles noninvasively evaluated by [18F]FDG-PET. METHODS: Based on a genetic signature, PETscore, representing [18F]FDG avidity, was developed by imaging data acquired from thirty patient-derived xenografts (PDX). The PETscore was validated by [18F]FDG-PET data and gene expression data of human GC. The PETscore was associated with genomic and transcriptomic profiles of GC using The Cancer Genome Atlas. RESULTS: Five genes, PLS1, PYY, HBQ1, SLC6A5, and NAT16, were identified for the predictive model for [18F]FDG uptake of GC. The PETscore was validated in independent PET data of human GC with qRT-PCR and RNA-sequencing. By applying PETscore on TCGA, a significant association between glucose uptake and tumor mutational burden as well as genomic alterations were identified. CONCLUSION: Our findings suggest that molecular characteristics are underlying the diverse metabolic profiles of GC. Diverse glucose metabolic profiles may apply to precise diagnostic and therapeutic approaches for GC.
Assuntos
Neoplasias Gástricas , Fluordesoxiglucose F18 , Glucose , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Metaboloma , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismoRESUMO
Although prime editors are a powerful tool for genome editing, which can generate various types of mutations such as nucleotide substitutions, insertions, and deletions in the genome without double-strand breaks or donor DNA, the conventional prime editors are still limited to their target scopes because of the PAM preference of the Streptococcus pyogenes Cas9 (spCas9) protein. Here, we describe the engineered prime editors to expand the range of their target sites using various PAM-flexible Cas9 variants. Using the engineered prime editors, we could successfully generate more than 50 types of mutations with up to 51.7% prime-editing activity in HEK293T cells. In addition, we successfully introduced the BRAF V600E mutation, which could not be induced by conventional prime editors. These variants of prime editors will broaden the applicability of CRISPR-based prime editing technologies in biological research.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Engenharia Genética , Motivos de Nucleotídeos , Alelos , Substituição de Aminoácidos , Sítios de Ligação , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética/métodos , Células HEK293 , Humanos , Mutação , Proteínas Proto-Oncogênicas B-raf/genéticaRESUMO
BACKGROUND: Immune checkpoint inhibitor (ICI) has an emerging role in several types of cancer. However, the mechanisms of acquired resistance (AR) to ICI have not been elucidated yet. To identify these mechanisms, we analyzed the pre- and post-ICI paired tumor samples in patients with AR. METHODS: Six patients with renal cell carcinoma, urothelial cell carcinoma, or head and neck cancer, who showed an initial response to ICI followed by progression and had available paired tissue samples, were retrospectively analyzed. Whole exome sequencing, RNA sequencing, and multiplex immunohistochemistry were performed on pre-treatment and resistant tumor samples. RESULTS: The median time to AR was 370 days (range, 210 to 739). Increased expression of alternative immune checkpoints including TIM3, LAG3, and PD-1 as well as increased CD8+ tumor-infiltrating lymphocytes were observed in post-treatment tumor than in pre-treatment tumor of a renal cell carcinoma patient. In contrast, CD8+ T cells and immunosuppressive markers were all decreased at AR in another patient with human papillomavirus-positive head and neck squamous cell carcinoma. This patient had an evident APOBEC-associated signature, and the tumor mutation burden increased at AR. Resistant tumor tissue of this patient harbored a missense mutation (E542K) in PIK3CA. No significant aberrations of antigen-presenting machinery or IFN-γ pathway were detected in any patient. CONCLUSIONS: Our study findings suggest that the observed increase in immunosuppressive markers after ICI might contribute to AR. Moreover, APOBEC-mediated PIK3CA mutagenesis might be an AR mechanism. To validate these mechanisms of AR, further studies with enough sample size are required.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/patologia , Neoplasias Urológicas/patologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Seguimentos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Masculino , Prognóstico , RNA-Seq , Estudos Retrospectivos , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/genética , Sequenciamento do ExomaRESUMO
BACKGROUND: Metastatic breast cancer (mBC) is a complex and life-threatening disease and although it is difficult to cure, patients can benefit from sequential anticancer treatment, including endocrine therapy, targeted therapy and cytotoxic chemotherapy. The patient-derived xenograft (PDX) model is suggested as a practical tool to predict the clinical outcome of this disease as well as to screen novel drugs. This study aimed to establish PDX models in Korean patients and analyze their genomic profiles and utility for translational research. METHODS: Percutaneous core needle biopsy or punch biopsy samples were used for xenotransplantation. Whole exome sequencing and transcriptome analysis were performed to assess the genomic and RNA expression profiles, respectively. Copy number variation and mutational burden were analyzed and compared with other metastatic breast cancer genomic results. Mutational signatures were also analyzed. The antitumor effect of an ATR inhibitor was tested in the relevant PDX model. RESULTS: Of the 151 cases studied, 40 (26%) PDX models were established. Notably, the take rate of all subtypes, including the hormone receptor-positive (HR +) subtype, exceeded 20%. The PDX model had genomic fidelity and copy number variation that represented the pattern of its donor sample. TP53, PIK3CA, ESR1, and GATA3 mutations were frequently found in our samples, with TP53 being the most frequently mutated, and the somatic mutations in these genes strengthened their frequency in the PDX model. The ESR1 mutation, CCND1 amplification, and the APOBEC signature were significant features in our HR + HER2- PDX model. Fulvestrant in combination with palbociclib showed a partial response to the relevant patient's tumor harboring the ESR1 mutation, and CCND1 amplification was found in the PDX model. AZD6738, an ATR inhibitor, delayed tumor growth in a relevant PDX model. CONCLUSIONS: Our PDX model was established using core needle biopsy samples from primary and metastatic tissues. Genomic profiles of the samples reflected their original tissue characteristics and could be used for the interpretation of clinical outcomes.
Assuntos
Neoplasias da Mama , Animais , Biópsia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA/genética , Genômica , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECTIVE: We evaluated the frequency, risk factors and the follow-up outcomes of thyroid nodules, and genetic alterations in thyroid cancer, in youth with childhood-onset Hashimoto thyroiditis (HT) residing in an iodine-sufficient country. DESIGN: A retrospective cohort study. PATIENTS AND MEASUREMENTS: A total of 213 patients (194 females, mean age 10.6 years at the time of HT diagnosis) were ultrasonographically evaluated. Thyroid nodules were categorized using the Korean Thyroid Imaging Reporting and Data System (K-TIRADS) and the American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TI-RADS). RESULTS: Thyroid nodules were detected in 40 (18.8%) patients over a median follow-up period of 3.4 years, usually after the onset of puberty. A family history of thyroid disease (hazard ratio 2.1, p = .031) was predictive of thyroid nodule detection. Papillary thyroid carcinoma (PTC) was diagnosed in 9 (4.2% of all and 22.5% of nodule-positive patients). The malignant nodules had a higher K-TIRADS or ACR-TI-RADS risk level compared with benign nodules (p < .01 for both). Genetic alterations were revealed in 7 (BRAFV600E in 6 and RET-ERC1 fusion in 1) of the eight available tumour tissue samples. None showed evidence of disease over a median follow-up period of 3.4 years. CONCLUSIONS: The nodule detection rate was 18.8%, with a 22.5% risk of malignancy among the detected nodules in childhood-onset HT patients, showing increased risk in those with a family history. Additional large-scale studies are required to evaluate the usefulness of K-TIRADS or ACR-TI-RADS risk level for the differentiation of paediatric thyroid nodules.
Assuntos
Doença de Hashimoto , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Adolescente , Criança , Feminino , Seguimentos , Doença de Hashimoto/genética , Humanos , Estudos Retrospectivos , Fatores de Risco , Neoplasias da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/genética , UltrassonografiaRESUMO
BACKGROUND: Nontuberculous mycobacterium (NTM) species are ubiquitous microorganisms. NTM pulmonary disease (NTM-PD) is thought to be caused not by human-to-human transmission but by independent environmental acquisition. However, recent studies using next-generation sequencing (NGS) have reported trans-continental spread of Mycobacterium abscessus among patients with cystic fibrosis. RESULTS: We investigated NTM genomes through NGS to examine transmission patterns in three pairs of co-habiting patients with NTM-PD who were suspected of patient-to-patient transmission. Three pairs of patients with NTM-PD co-habiting for at least 15 years were enrolled: a mother and a daughter with M. avium-PD, a couple with M. intracellulare-PD, and a second couple, one of whom was infected with M. intracellulare and the other of whom was infected with M. abscessus. Whole genome sequencing was performed using patients' NTM isolates as well as environmental specimens. Genetic distances were estimated based on single nucleotide polymorphisms (SNPs). By comparison with the genetic distances among 78 publicly available NTM genomes, NTM isolates derived from the two pairs of patients infected with the same NTM species were not closely related to each other. In phylogenetic analysis, the NTM isolates from patients with M. avium-PD clustered with isolates from different environmental sources. CONCLUSIONS: In conclusion, considering the genetic distances between NTM strains, the likelihood of patient-to-patient transmission in pairs of co-habiting NTM-PD patients without overt immune deficiency is minimal.
Assuntos
Microbiologia Ambiental , Pneumopatias/microbiologia , Micobactérias não Tuberculosas/genética , Escarro/microbiologia , Sequenciamento Completo do Genoma/métodos , Idoso , Idoso de 80 Anos ou mais , Fibrose Cística/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/transmissão , Complexo Mycobacterium avium/genética , Complexo Mycobacterium avium/isolamento & purificação , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/fisiologia , FilogeniaRESUMO
Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphomas (EBV+-DLBLs) tend to occur in immunocompromised patients, such as the elderly or those undergoing solid organ transplantation. The pathogenesis and genomic characteristics of EBV+-DLBLs are largely unknown because of the limited availability of human samples and lack of experimental animal models. We observed the development of 25 human EBV+-DLBLs during the engraftment of gastric adenocarcinomas into immunodeficient mice. An integrated genomic analysis of the human-derived EBV+-DLBLs revealed enrichment of mutations in Rho pathway genes, including RHPN2, and Rho pathway transcriptomic activation. Targeting the Rho pathway using a Rho-associated protein kinase (ROCK) inhibitor, fasudil, markedly decreased tumor growth in EBV+-DLBL patient-derived xenograft (PDX) models. Thus, alterations in the Rho pathway appear to contribute to EBV-induced lymphomagenesis in immunosuppressed environments.
Assuntos
Adenocarcinoma/metabolismo , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/virologia , Animais , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/virologia , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Proteínas rho de Ligação ao GTP/genéticaRESUMO
Somatic cell reprogramming to a pluripotent state continues to challenge many of our assumptions about cellular specification, and despite major efforts, we lack a complete molecular characterization of the reprograming process. To address this gap in knowledge, we generated extensive transcriptomic, epigenomic and proteomic data sets describing the reprogramming routes leading from mouse embryonic fibroblasts to induced pluripotency. Through integrative analysis, we reveal that cells transition through distinct gene expression and epigenetic signatures and bifurcate towards reprogramming transgene-dependent and -independent stable pluripotent states. Early transcriptional events, driven by high levels of reprogramming transcription factor expression, are associated with widespread loss of histone H3 lysine 27 (H3K27me3) trimethylation, representing a general opening of the chromatin state. Maintenance of high transgene levels leads to re-acquisition of H3K27me3 and a stable pluripotent state that is alternative to the embryonic stem cell (ESC)-like fate. Lowering transgene levels at an intermediate phase, however, guides the process to the acquisition of ESC-like chromatin and DNA methylation signature. Our data provide a comprehensive molecular description of the reprogramming routes and is accessible through the Project Grandiose portal at http://www.stemformatics.org.
Assuntos
Reprogramação Celular/genética , Genoma/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epistasia Genética/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/química , Histonas/metabolismo , Internet , Camundongos , Proteoma/genética , Proteômica , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcriptoma/genética , Transgenes/genéticaRESUMO
TRPV3, a member of the thermosensitive Ca2+-permeable TRPV channel subfamily expressed in skin and sensory nerves, is also activated by chemical agonists such as 2-aminoethyl diphenylborinate (2-APB). Repetitive stimuli induce sensitization of TRPV3 activation, characterized by the cumulative increase in current amplitude and linearization of current-voltage relation (I/V curve). Through genomic analysis of various populations, we found non-rare TRPV3 mutation (p.A628T) in East Asian people with an allele frequency of 0.249 while 0.007 in Caucasian. Slope conductance of unitary channel was not different between WT and p.A628T. Whole-cell patch clamp study of wildtype TRPV3 (WT) and p.A628T overexpressed in HEK293T cells showed similar sensitization by the repetitive increase in temperature from 23 to 37 °C, while slightly higher sensitization to 43 °C in p.A628T. In contrast, the repetitive application of 2-APB (10 µM) or carvacrol (100 µM) induced faster sensitization in p.A628T than WT. However, 1 µM farnesyl pyrophosphate, an intrinsic lipid metabolite agonist, induced similar level of slow activations in WT and p.A628T. In Fura-2 microspectrofluorimetry, the 2-APB pulses induced a faster increase of [Ca2+]c in p.A628T than WT. In terms of ionic selectivity of channels, WT and p.A628T showed similar Ca2+ permeability (PCa/PNa) calculated from the reversal potential of I/V curves. Taken together, p.A628T shows faster sensitization to chemical agonists that are reflected as higher [Ca2+]c signaling. Based on the intriguing pharmacological sensitivity, the physiological implications of p.A628T in the East Asian population require further investigation.
Assuntos
Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPV/genética , Povo Asiático/genética , Compostos de Boro/farmacologia , Sinalização do Cálcio , Cimenos/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico , Fosfatos de Poli-Isoprenil/farmacologia , Sesquiterpenos/farmacologia , Canais de Cátion TRPV/agonistasRESUMO
BACKGROUND: Mycoplasma pneumoniae is a common cause of respiratory tract infections in children and adults. This study applied high-throughput whole genome sequencing (WGS) technologies to analyze the genomes of 30 M. pneumoniae strains isolated from children with pneumonia in South Korea during the two epidemics from 2010 to 2016 in comparison with a global collection of 48 M. pneumoniae strains which includes seven countries ranging from 1944 to 2017. RESULTS: The 30 Korean strains had approximately 40% GC content and ranged from 815,686 to 818,669 base pairs, coding for a total of 809 to 828 genes. Overall, BRIG revealed 99% to > 99% similarity among strains. The genomic similarity dropped to approximately 95% in the P1 type 2 strains when aligned to the reference M129 genome, which corresponded to the region of the p1 gene. MAUVE detected four subtype-specific insertions (three in P1 type 1 and one in P1 type 2), of which were all hypothetical proteins except one tRNA insertion in all P1 type 1 strains. The phylogenetic associations of 30 strains were generally consistent with the multilocus sequence typing results. The phylogenetic tree constructed with 78 genomes including 30 genomes from Korea formed two clusters and further divided into two sub-clusters. eBURST analysis revealed two clonal complexes according to P1 typing results showing higher diversity among P1 type 2 strains. CONCLUSIONS: The comparative whole genome approach was able to define high genetic identity, unique structural diversity, and phylogenetic associations among the 78 M. pneumoniae strains isolated worldwide.
Assuntos
Genoma Bacteriano , Mycoplasma pneumoniae/genética , Proteínas de Bactérias/genética , Criança , Epidemias , Genômica , Humanos , Mutação INDEL , Mycoplasma pneumoniae/classificação , Mycoplasma pneumoniae/isolamento & purificação , Filogenia , Pneumonia por Mycoplasma/epidemiologia , Pneumonia por Mycoplasma/microbiologia , Polimorfismo de Nucleotídeo Único , República da Coreia/epidemiologiaRESUMO
Follicular thyroid carcinoma (FTC) and benign follicular adenoma (FA) are indistinguishable by preoperative diagnosis due to their similar histological features. Here we report the first RNA sequencing study of these tumors, with data for 30 minimally invasive FTCs (miFTCs) and 25 FAs. We also compared 77 classical papillary thyroid carcinomas (cPTCs) and 48 follicular variant of PTCs (FVPTCs) to observe the differences in their molecular properties. Mutations in H/K/NRAS, DICER1, EIF1AX, IDH1, PTEN, SOS1, and SPOP were identified in miFTC or FA. We identified a low frequency of fusion genes in miFTC (only one, PAX8-PPARG), but a high frequency of that in PTC (17.60%). The frequencies of BRAFV600E and H/K/NRAS mutations were substantially different in miFTC and cPTC, and those of FVPTC were intermediate between miFTC and cPTC. Gene expression analysis demonstrated three molecular subtypes regardless of their histological features, including Non-BRAF-Non-RAS (NBNR), as well as BRAF-like and RAS-like. The novel molecular subtype, NBNR, was associated with DICER1, EIF1AX, IDH1, PTEN, SOS1, SPOP, and PAX8-PPARG. The transcriptome of miFTC or encapsulated FVPTC was indistinguishable from that of FA, providing a molecular explanation for the similarly indolent behavior of these tumors. We identified upregulation of genes that are related to mitochondrial biogenesis including ESRRA and PPARGC1A in oncocytic follicular thyroid neoplasm. Arm-level copy number variations were correlated to histological and molecular characteristics. These results expanded the current molecular understanding of thyroid cancer and may lead to new diagnostic and therapeutic approaches to the disease.