Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Pain Res (Lausanne) ; 4: 1057659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874441

RESUMO

Two behavioural phenotypes in healthy people have been delineated based on their intrinsic attention to pain (IAP) and whether their reaction times (RT) during a cognitively-demanding task are slower (P-type) or faster (A-type) during experimental pain. These behavioural phenotypes were not previously studied in chronic pain populations to avoid using experimental pain in a chronic pain context. Since pain rumination (PR) may serve as a supplement to IAP without needing noxious stimuli, we attempted to delineate A-P/IAP behavioural phenotypes in people with chronic pain and determined if PR can supplement IAP. Behavioural data acquired in 43 healthy controls (HCs) and 43 age-/sex-matched people with chronic pain associated with ankylosing spondylitis (AS) was retrospectively analyzed. A-P behavioural phenotypes were based on RT differences between pain and no-pain trials of a numeric interference task. IAP was quantified based on scores representing reported attention towards or mind-wandering away from experimental pain. PR was quantified using the pain catastrophizing scale, rumination subscale. The variability in RT was higher during no-pain trials in the AS group than HCs but was not significantly different in pain trials. There were no group differences in task RTs in no-pain and pain trials, IAP or PR scores. IAP and PR scores were marginally significantly positively correlated in the AS group. RT differences and variability were not significantly correlated with IAP or PR scores. Thus, we propose that experimental pain in the A-P/IAP protocols can confound testing in chronic pain populations, but that PR could be a supplement to IAP to quantify attention to pain.

2.
Brain Commun ; 4(5): fcac237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246046

RESUMO

Carpal tunnel syndrome is the most common entrapment neuropathy and is associated with altered brain function and structure. However, little is understood of the central mechanisms associated with its pain, symptom presentation, and treatment-related resolution. This longitudinal study evaluated carpal tunnel syndrome-related alterations in brain network communication and relationships to behavioural signs of central sensitization before and after carpal tunnel release surgery. We tested the hypothesis that carpal tunnel syndrome is associated with condition- and treatment-related plasticity in brain regions involved in somatosensation. We used quantitative sensory testing and clinical and pain questionnaires to assess sensory and pain function in 25 patients with carpal tunnel syndrome before (18 women, 7 men) and after (n = 16) surgery, and 25 sex- and age-matched healthy controls. We also acquired resting-state functional MRI to determine functional connectivity of two key nodes in the somatosensory system, the thalamus and primary somatosensory cortex. Seed-to-whole brain resting-state static functional connectivity analyses revealed abnormally low functional connectivity for the hand area of the primary somatosensory cortex with the contralateral somatosensory association cortex (supramarginal gyrus) before surgery (P < 0.01). After clinically effective surgery: (i) Primary somatosensory functional connectivity was normalized with the contralateral somatosensory association cortex and reduced with the dorsolateral prefrontal cortex (a region associated with cognitive and emotional modulation of pain) and primary visual areas (P < 0.001) from pre-op levels; and (ii) Functional connectivity of the thalamus with the primary somatosensory and motor cortices was attenuated from pre-op levels (P < 0.001) but did not correlate with temporal summation of pain (a behavioural measure of central sensitization) or clinical measures. This study is the first to reveal treatment-related neuroplasticity in resting-state functional connectivity of the somatosensory system in carpal tunnel syndrome. The findings of dysfunctional resting-state functional connectivity point to aberrant neural synchrony between the brain's representation of the hand with regions involved in processing and integrating tactile and nociceptive stimuli and proprioception in carpal tunnel syndrome. Aberrant neural communication between the primary somatosensory hand area and the dorsolateral prefrontal cortex could reflect increased attention to pain, paraesthesia, and altered sensation in the hand. Finally, reduced thalamocortical functional connectivity after surgery may reflect central plasticity in response to the resolution of abnormal sensory signals from the periphery. Our findings support the concept of underlying brain contributions to this peripheral neuropathy, specifically aberrant thalamocortical and corticocortical communication, and point to potential central therapeutic targets to complement peripheral treatments.

3.
Front Pain Res (Lausanne) ; 2: 673538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295450

RESUMO

The subgenual anterior cingulate cortex (sgACC) is a key node of the descending antinociceptive system with sex differences in its functional connectivity (FC). We previously reported that, in a male-prevalent chronic pain condition, sgACC FC is abnormal in women but not in men. This raises the possibility that, within a sex, sgACC FC may be either protective or represent a vulnerability to develop a sex-dominant chronic pain condition. The aim of this study was to characterize sgACC FC in a female-dominant chronic pain condition, carpal tunnel syndrome (CTS), to investigate whether sgACC abnormalities are a common feature in women with chronic pain or unique to individuals with pain conditions that are more prevalent in the opposite sex. We used fMRI to determine the resting state FC of the sgACC in healthy controls (HCs, n = 25, 18 women; 7 men) and people with CTS before (n = 25, 18 women; 7 men) and after (n = 17, 13 women; 4 men) successful surgical treatment. We found reduced sgACC FC with the medial pre-frontal cortex (mPFC) and temporal lobe in CTS compared with HCs. The group-level sgACC-mPFC FC abnormality was driven by men with CTS, while women with CTS did not have sgACC FC abnormalities compared with healthy women. We also found that age and sex influenced sgACC FC in both CTS and HCs, with women showing greater FC with bilateral frontal poles and men showing greater FC with the parietal operculum. After surgery, there was reduced sgACC FC with the orbitofrontal cortex, striatum, and premotor areas and increased FC with the posterior insula and precuneus compared with pre-op scans. Abnormally reduced sgACC-mPFC FC in men but not women with a female-prevalent chronic pain condition suggests pain-related sgACC abnormalities may not be specific to women but rather to individuals who develop chronic pain conditions that are more dominant in the opposite sex. Our data suggest the sgACC plays a role in chronic pain in a sex-specific manner, and its communication with other regions of the dynamic pain connectome undergoes plasticity following pain-relieving treatment, supporting it as a potential therapeutic target for neuromodulation in chronic pain.

4.
Pain ; 162(1): 97-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773597

RESUMO

The subgenual anterior cingulate cortex (sgACC) plays an important role in pain modulation. We previously demonstrated sex differences in sgACC functional connectivity (FC) in healthy individuals. Given that many chronic pain conditions show sex differences in prevalence, here we tested the hypothesis that people with chronic pain exhibit a sex-specific pattern of abnormal sgACC FC. We acquired resting-state functional magnetic resonance imaging data from 156 (82 W: 74 M) healthy participants and 38 (19 W: 19 M) people with chronic low back pain resulting from ankylosing spondylitis, a condition that predominantly affects men. We confirmed that there are sex differences in sgACC FC in our large cohort of healthy adults; women had greater sgACC FC with the precuneus, a key node of the default mode network, and men had greater sgACC FC with the posterior insula and the operculum. Next, we identified an interaction effect between sex and pain status (healthy/chronic pain) for sgACC FC. Within the chronic pain group, women had greater sgACC FC than men to the default mode and sensorimotor networks. Compared to healthy women, women with chronic pain also had greater sgACC FC to the precuneus and lower FC to the hippocampus and frontal regions. No differences in sgACC FC were seen in men with vs without chronic pain. Our findings indicate that abnormal sgACC circuitry is unique to women but not men with ankylosing spondylitis-related chronic pain. These sex differences may impact the benefit of therapeutics that target the sgACC for chronic pain.


Assuntos
Dor Crônica , Espondilite Anquilosante , Adulto , Mapeamento Encefálico , Dor Crônica/diagnóstico por imagem , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Caracteres Sexuais
5.
Pain ; 159(8): 1621-1630, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29697536

RESUMO

Resilience is a psychological trait that strongly predicts chronic pain-related health outcomes. The neural correlates of both pain and trait resilience are critical to understand the brain-behaviour relationship in chronic pain; yet, neural correlates of resilience in chronic pain states are unknown. However, measures of pain perception and a wide range of psychological health measures have been linked to function of the default mode network (DMN). Thus, we aimed to determine the relationships between resilience, pain perception, and functional connectivity (FC) within the DMN and between the DMN and other brain networks. Resting-state functional magnetic resonance imaging data were acquired from 51 chronic pain patients with a form of spondylarthritis (ankylosing spondylitis) and 51 healthy control participants. Participants completed a questionnaire on their individual trait resilience (the Resilience Scale), and patients reported their clinical pain. In healthy controls, we found within-DMN FC to be stronger in less resilient individuals. In patients with chronic pain, individual resilience was negatively correlated with pain and disease activity. Cross-network FC between the DMN and the sensorimotor network was abnormally high in patients with high clinical pain scores on the day of the study. Finally, there was an interaction between within-DMN FC and clinical pain report in patients: In patients reporting greater pain, the relationship between within-DMN connectivity and resilience was atypical. Thus, our findings reveal different neural representations of resilience and pain. The way in which these behavioural measures interact provides insight into understanding the neural correlates of chronic pain.


Assuntos
Encéfalo/diagnóstico por imagem , Dor Crônica/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Resiliência Psicológica , Adolescente , Adulto , Dor Crônica/psicologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Espondilite Anquilosante/diagnóstico por imagem , Espondilite Anquilosante/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA