Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(33): e2300659, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072896

RESUMO

Controlling diamond structures with nanometer precision is fundamentally challenging owing to their extreme and far-from-equilibrium synthetic conditions. State-of-the-art techniques, including detonation, chemical vapor deposition, mechanical grinding, and high-pressure-high-temperature synthesis, yield nanodiamond particles with a broad distribution of sizes. Despite many efforts, the direct synthesis of nanodiamonds with precisely controlled diameters remains elusive. Here the geochemistry-inspired synthesis of sub-5 nm nanodiamonds with sub-nanometer size deviation is described. High-pressure-high-temperature treatment of uniform iron carbide nanoparticles embedded in iron oxide matrices yields nanodiamonds with tunable diameters down to 2.13 and 0.22 nm standard deviation. A self-limiting, redox-driven, and diffusion-controlled solid-state reaction mechanism is proposed and supported by in situ X-ray diffraction, ex situ characterizations, and computational modeling. This work provides a unique mechanism for the precise control of nanostructured diamonds under extreme conditions and paves the road for the full realization of their potential in emerging technologies.

2.
J Am Chem Soc ; 143(7): 2660-2664, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33502185

RESUMO

While nanoscale mimics of peroxidase have been extensively developed over the past decade or so, their catalytic efficiency as a key parameter has not been substantially improved in recent years. Herein, we report a class of highly efficient peroxidase mimic-nickel-platinum nanoparticles (Ni-Pt NPs) that consist of nickel-rich cores and platinum-rich shells. The Ni-Pt NPs exhibit a record high catalytic efficiency with a catalytic constant (Kcat) as high as 4.5 × 107 s-1, which is ∼46- and 104-fold greater than the Kcat values of conventional Pt nanoparticles and natural peroxidases, respectively. Density functional theory calculations reveal that the unique surface structure of Ni-Pt NPs weakens the adsorption of key intermediates during catalysis, which boosts the catalytic efficiency. The Ni-Pt NPs were applied to an immunoassay of a carcinoembryonic antigen that achieved an ultralow detection limit of 1.1 pg/mL, hundreds of times lower than that of the conventional enzyme-based assay.

3.
J Am Chem Soc ; 142(16): 7480-7486, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32239925

RESUMO

To discover the nonlinear optical (NLO) materials with strong second harmonic generation (SHG), the design of NLO-active molecular units with large polarization is considered as a common strategy. Herein, we propose that the local structural distortion induced with vacancies, apart from the NLO-active units, can be employed to improve the NLO effect in solids as well. Accordingly, a new tungsten bronze (TB) oxide, Pb2(Pb0.15Li0.7□0.15)Nb5O15 (□ representing vacancies), is successfully designed and prepared, which exhibits a strong SHG response of 39 times that of KH2PO4. The detailed analysis reveals that the local structural distortions enhanced by the vacancies in PLN strengthen the local dipole moments of neighboring NbO6 octahedra, and thus significantly prompt the SHG effect. Moreover, a series of new TB compounds with large NLO effects are discovered by this molecular design strategy, which are perspectives for new NLO materials synthesis.

4.
Electrophoresis ; 41(7-8): 630-637, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31709550

RESUMO

In this work, we present a step-by-step workflow for the fabrication of 2D hexagonal boron nitride (h-BN) nanopores which are then used to sense holo-human serum transferrin (hSTf) protein at pH ∼8 under applied voltages ranging from +100 mV to +800 mV. 2D nanopores are often used for DNA, however, there is a great void in the literature for single-molecule protein sensing and this, to the best of our knowledge, is the first time where h-BN-a material with large band-gap, low dielectric constant, reduced parasitic capacitance and minimal charge transfer induced noise-is used for protein profiling. The corresponding ΔG (change in pore conductance due to analyte translocation) profiles showed a bimodal Gaussian distribution where the lower and higher ΔG distributions were attributed to (pseudo-) folded and unfolded conformations respectively. With increasing voltage, the voltage induced unfolding increased (evident by decrease in ΔG) and plateaued after ∼400 mV of applied voltage. From the ΔG versus voltage profile corresponding to the pseudo-folded state, we calculated the molecular radius of hSTf, and was found to be ∼3.1 nm which is in close concordance with the literature reported value of ∼3.25 nm.


Assuntos
Compostos de Boro/química , Técnicas Eletroquímicas/métodos , Nanoporos , Transferrina/química , Desenho de Equipamento , Humanos , Conformação Proteica , Termodinâmica , Titânio , Transferrina/análise
5.
J Am Chem Soc ; 141(27): 10722-10728, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251057

RESUMO

The correlation between lattice oxygen (O) binding energy and O oxidation activity imposes a fundamental limit in developing oxide catalysts, simultaneously meeting the stringent thermal stability and catalytic activity standards for complete oxidation reactions under harsh conditions. Typically, strong O binding indicates a stable surface structure, but low O oxidation activity, and vice versa. Using nitric oxide (NO) catalytic oxidation as a model reaction, we demonstrate that this conflicting correlation can be avoided by cooperative lattice oxygen redox on SmMn2O5 mullite oxides, leading to stable and active oxide surface structures. The strongly bound neighboring lattice oxygen pair cooperates in NO oxidation to form bridging nitrate (NO3-) intermediates, which can facilely transform into monodentate NO3- by a concerted rotation with simultaneous O2 adsorption onto the resulting oxygen vacancy. Subsequently, monodentate NO3- species decompose to NO2 to restore one of the lattice oxygen atoms that act as a reversible redox center, and the vacancy can easily activate O2 to replenish the consumed one. This discovery not only provides insights into the cooperative reaction mechanism but also aids the design of oxidation catalysts with the strong O binding region, offering strong activation of O2, high O activity, and high thermal stability in harsh conditions.

6.
Adv Funct Mater ; 29(33)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34326713

RESUMO

Silica particles are convenient ultrasound imaging contrast agents because of their long imaging time and ease of modification; however, they require a relatively high insonation power for imaging and have low biodegradability. In this study, 2 µm ultrathin asymmetric hollow silica particles doped with iron (III) (Fe(III)-SiO2) are synthesized to produce biodegradable hard shelled particles with a low acoustic power threshold comparable with commercial soft microbubble contrast agents (Definity) yet with much longer in vivo ultrasound imaging time. Furthermore, high intensity focused ultrasound ablation enhancement with these particles shows a 2.5-fold higher temperature elevation than with Definity at the same applied power. The low power visualization improves utilization of the silica shells as an adjuvant in localized immunotherapy. The data are consistent with asymmetric engineering of hard particle properties that improve functionality of hard versus soft particles.

7.
Electrophoresis ; 40(9): 1337-1344, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667089

RESUMO

This paper describes a method to gauge the stiffness of nanosized liposomes - a nanoscale vesicle - using a custom-made recapture platform coupled to a solid-state nanopore sensor. The recapture platform electrically profiles a given liposome vesicle multiple times through automated reversal of the voltage polarity immediately following a translocation instance to re-translocate the same analyte through the nanopore - provides better statistical insight at the molecular level by analyzing the same particle multiple times compared to conventional nanopore platforms. The capture frequency depends on the applied voltage with lower voltages (i.e., 100 mV) permitting higher recapture instances than at higher voltages (>200 mV) since the probability of particles exiting the nanopore capture radius increases with voltage. The shape deformation was inferred by comparing the normalized relative current blockade ( ΔI/I0̂) at the two voltage polarities to that of a rigid particle, i.e., polystyrene beads. We found that liposomes deform to adopt a prolate shape at higher voltages. This platform can be further applied to investigate the stiffness of other types of soft matters, e.g., virus, exosomes, endosomes, and accelerate the potential studies in pharmaceutics for increasing the drug packing and unpacking mechanism by controlling the stiffness of the drug vesicles.


Assuntos
Elasticidade , Lipossomos/ultraestrutura , Nanotecnologia/métodos , Automação/métodos , Eletricidade , Microesferas , Nanoporos , Poliestirenos/normas
8.
Electrophoresis ; 39(5-6): 833-843, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29125659

RESUMO

Solid-state nanopore sensors have been used to measure the size of a nanoparticle by applying a resistive pulse sensing technique. Previously, the size distribution of the population pool could be investigated utilizing data from a single translocation, however, the accuracy of the distribution is limited due to the lack of repeated data. In this study, we characterized polystyrene nanobeads utilizing single particle recapture techniques, which provide a better statistical estimate of the size distribution than that of single sampling techniques. The pulses and translocation times of two different sized nanobeads (80 nm and 125 nm in diameter) were acquired repeatedly as nanobeads were recaptured multiple times using an automated system controlled by custom-built scripts. The drift-diffusion equation was solved to find good estimates for the configuration parameters of the recapture system. The results of the experiment indicated enhancement of measurement precision and accuracy as nanobeads were recaptured multiple times. Reciprocity of the recapture and capacitive effects in solid state nanopores are discussed. Our findings suggest that solid-state nanopores and an automated recapture system can also be applied to soft nanoparticles, such as liposomes, exosomes, or viruses, to analyze their mechanical properties in single-particle resolution.


Assuntos
Nanopartículas/análise , Nanoporos , Tamanho da Partícula , Simulação por Computador , Difusão , Difusão Dinâmica da Luz/métodos , Campos Eletromagnéticos , Poliestirenos/química , Porosidade , Compostos de Silício/química , Propriedades de Superfície , Fatores de Tempo
9.
Nano Lett ; 17(6): 3919-3925, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28557462

RESUMO

We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe2. We observe large interlayer current densities of 2 and 2.5 µA/µm2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

10.
Nano Lett ; 16(4): 2812-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999499

RESUMO

Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd-Ru core-frame octahedra could be easily converted to Ru octahedral nanoframes of ∼2 nm in thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. The fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.

11.
Nano Lett ; 16(6): 3850-7, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135156

RESUMO

A number of groups have reported the syntheses of nanosized Pt-Ni octahedra with remarkable activities toward the oxygen reduction reaction (ORR), a process key to the operation of proton-exchange membrane fuel cells. However, the throughputs of those batch-based syntheses are typically limited to a scale of 5-25 mg Pt per batch, which is far below the amount needed for commercial evaluation. Here we report the use of droplet reactors for the continuous and scalable production of Pt-Ni octahedra with high activities toward ORR. In a typical synthesis, Pt(acac)2, Ni(acac)2, and W(CO)6 were dissolved in a mixture of oleylamine, oleic acid, and benzyl ether, and then pumped into a polytetrafluoroethylene tube. When the solution entered the reaction zone at a temperature held in the range of 170-230 °C, W(CO)6 quickly decomposed to generate CO gas, naturally separating the reaction solution into discrete, uniform droplets. Each droplet then served as a reactor for the nucleation and growth of Pt-Ni octahedra whose size and composition could be controlled by changing the composition of the solvent and/or adjusting the amount of Ni(acac)2 added into the reaction solution. For a catalyst based on Pt2.4Ni octahedra of 9 nm in edge length, it showed an ORR mass activity of 2.67 A mgPt(-1) at 0.9 V, representing an 11-fold improvement over a state-of-the-art commercial Pt/C catalyst (0.24 A mgPt(-1)).

12.
Nano Lett ; 16(9): 5437-43, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27494551

RESUMO

Controllable doping of two-dimensional materials is highly desired for ideal device performance in both hetero- and p-n homojunctions. Herein, we propose an effective strategy for doping of MoS2 with nitrogen through a remote N2 plasma surface treatment. By monitoring the surface chemistry of MoS2 upon N2 plasma exposure using in situ X-ray photoelectron spectroscopy, we identified the presence of covalently bonded nitrogen in MoS2, where substitution of the chalcogen sulfur by nitrogen is determined as the doping mechanism. Furthermore, the electrical characterization demonstrates that p-type doping of MoS2 is achieved by nitrogen doping, which is in agreement with theoretical predictions. Notably, we found that the presence of nitrogen can induce compressive strain in the MoS2 structure, which represents the first evidence of strain induced by substitutional doping in a transition metal dichalcogenide material. Finally, our first principle calculations support the experimental demonstration of such strain, and a correlation between nitrogen doping concentration and compressive strain in MoS2 is elucidated.

13.
Proc Natl Acad Sci U S A ; 110(17): 6669-73, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569268

RESUMO

Controlling the shape or morphology of metal nanocrystals is central to the realization of their many applications in catalysis, plasmonics, and electronics. In one of the approaches, the metal nanocrystals are grown from seeds of certain crystallinity through the addition of atomic species. In this case, manipulating the rates at which the atomic species are added onto different crystallographic planes of a seed has been actively explored to control the growth pattern of a seed and thereby the shape or morphology taken by the final product. Upon deposition, however, the adsorbed atoms (adatoms) may not stay at the same sites where the depositions occur. Instead, they can migrate to other sites on the seed owing to the involvement of surface diffusion, and this could lead to unexpected deviations from a desired growth pathway. Herein, we demonstrated that the growth pathway of a seed is indeed determined by the ratio between the rates for atom deposition and surface diffusion. Our result suggests that surface diffusion needs to be taken into account when controlling the shape or morphology of metal nanocrystals.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Moleculares , Paládio/química , Adsorção , Difusão , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica , Propriedades de Superfície
14.
Nano Lett ; 15(10): 6586-91, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26349430

RESUMO

Substitutional doping of transition metal dichalcogenides (TMDs) may provide routes to achieving tunable p-n junctions, bandgaps, chemical sensitivity, and magnetism in these materials. In this study, we demonstrate in situ doping of monolayer molybdenum disulfide (MoS2) with manganese (Mn) via vapor phase deposition techniques. Successful incorporation of Mn in MoS2 leads to modifications of the band structure as evidenced by photoluminescence and X-ray photoelectron spectroscopy, but this is heavily dependent on the choice of substrate. We show that inert substrates (i.e., graphene) permit the incorporation of several percent Mn in MoS2, while substrates with reactive surface terminations (i.e., SiO2 and sapphire) preclude Mn incorporation and merely lead to defective MoS2. The results presented here demonstrate that tailoring the substrate surface could be the most significant factor in substitutional doping of TMDs with non-TMD elements.

15.
Angew Chem Int Ed Engl ; 55(52): 16039-16043, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-27882633

RESUMO

Identifying key factors that govern the in vivo behavior of nanomaterials is critical to the clinical translation of nanomedicines. Overshadowed by size-, shape-, and surface-chemistry effects, the impact of the particle core density on clearance and tumor targeting of inorganic nanoparticles (NPs) remains largely unknown. By utilizing a class of ultrasmall metal NPs with the same size and surface chemistry but different densities, we found that the renal-clearance efficiency exponentially increased in the early elimination phase while passive tumor targeting linearly decreased with a decrease in particle density. Moreover, lower-density NPs are more easily distributed in the body and have shorter retention times in highly permeable organs than higher-density NPs. The density-dependent in vivo behavior of metal NPs likely results from their distinct margination in laminar blood flow, which opens up a new path for precise control of nanomedicines in vivo.


Assuntos
Rim/metabolismo , Nanopartículas Metálicas/química , Neoplasias/química , Glutationa/química , Glutationa/metabolismo , Ouro/química , Ouro/metabolismo , Humanos , Neoplasias/metabolismo , Tamanho da Partícula , Prata/química , Prata/metabolismo , Propriedades de Superfície
16.
Nano Lett ; 14(11): 6626-31, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25272334

RESUMO

Noble-metal nanocrystals are essential to applications in a variety of areas, including catalysis, electronics, and photonics. Despite the large number of reports, there still exists a gap between academic studies and industrial applications due to the lack of ability to produce the nanocrystals in large quantities while still maintaining the good uniformity and precise controls. Because the nucleation and growth of colloidal nanocrystals are highly sensitive to experimental conditions, it is impractical to scale up their production by simply increasing the reaction volume. Here we report a new and practical approach based on milliliter-sized droplet reactors to the scalable production of nanocrystals. The droplets of 0.25 mL in volume were produced as a continuous flow in a fluidic device assembled from commercially available components. As a proof of concept, we have synthesized Pd, Au, and Pd-M (M = Au, Pt, and Ag) nanocrystals with controlled sizes, shapes, compositions, and structures on a scale of 1-10 g per hour (e.g., 3.6 g per hour for Pd cubes of 10 nm in edge length).

17.
Nano Lett ; 14(6): 3570-6, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24797061

RESUMO

An effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the deposited Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@PtnL (n = 1-6) core-shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt2-3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.

18.
Nano Lett ; 14(12): 6936-41, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25383798

RESUMO

Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).


Assuntos
Grafite/química , Membranas Artificiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Selênio/química , Compostos de Tungstênio/química , Condutividade Elétrica , Teste de Materiais
19.
Nanotechnology ; 25(1): 014003, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24334403

RESUMO

This article describes site-selective sulfurization of Pd nanocubes capped by a monolayer of chemisorbed Br(-) ions. High-resolution transmission electron microscopy and high-angle annular dark-field scanning TEM observations showed that PdS was not formed until a certain quantity of polysulfide (S(x)(2-)) ions had been introduced (300 µl, or 18.8 ppm in the final reaction solution). Spot energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy analyses confirmed that the surface-chemisorbed Br(-) ions were completely substituted by S(x)(2-) ions before the initiation of the sulfurization reaction. In the presence of sufficient S(x)(2-) ions (>300 µl or >18.8 ppm), PdS phase was selectively developed from the highly active corners, which then moved to the edges and finally towards the center until the entire nanocube was converted into PdS. The resultant PdS was found to be amorphous by electron microscopy and powder x-ray diffraction measurements. The amorphous structure of PdS facilitated the penetration and diffusion of S(x)(2-) species and thus acceleration of the reaction kinetics. As a result, the sulfurization of 13 nm Pd nanocubes was completed within a few minutes after the addition of adequate Na2Sx, leading to a much more severe poisoning effect, compared with other noble metals such as Ag, by sulfur.

20.
Nano Lett ; 13(12): 6262-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24215542

RESUMO

This paper describes a facile synthesis of Rh tetrahedrons with concave side faces by collectively manipulating the reaction kinetics, facet-selective capping, and surface diffusion of atoms. Specifically, a combination of Na3RhCl6, triethylene glycol, l-ascorbic acid, and citric acid provides the right conditions for generating the concave tetrahedrons. After the formation of small Rh tetrahedral seeds through self-nucleation, the subsequently generated Rh atoms were selectively deposited onto the corner sites to generate Rh tetrapods. At the same time, the deposited atoms could diffuse from the corners to edges to generate concave side faces because the diffusion to face sites was restrained by the citric acid adsorbed on the {111} facets. This study offers deep insight into the growth mechanism involved the formation of noble-metal nanocrystals with concave surfaces. The Rh concave tetrahedrons were encased by a mix of {111} and {110} facets, showing great potential for catalytic applications.


Assuntos
Difusão , Nanopartículas Metálicas/química , Ródio/química , Propriedades de Superfície , Catálise , Cinética , Paládio/química , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA