Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(5): 5317-5364, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35104403

RESUMO

In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.


Assuntos
Robótica , Fenômenos Magnéticos , Magnetismo , Robótica/métodos
2.
Nature ; 558(7709): 274-279, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899476

RESUMO

Soft materials capable of transforming between three-dimensional (3D) shapes in response to stimuli such as light, heat, solvent, electric and magnetic fields have applications in diverse areas such as flexible electronics1,2, soft robotics3,4 and biomedicine5-7. In particular, magnetic fields offer a safe and effective manipulation method for biomedical applications, which typically require remote actuation in enclosed and confined spaces8-10. With advances in magnetic field control 11 , magnetically responsive soft materials have also evolved from embedding discrete magnets 12 or incorporating magnetic particles 13 into soft compounds to generating nonuniform magnetization profiles in polymeric sheets14,15. Here we report 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation. Our approach is based on direct ink writing 16 of an elastomer composite containing ferromagnetic microparticles. By applying a magnetic field to the dispensing nozzle while printing 17 , we reorient particles along the applied field to impart patterned magnetic polarity to printed filaments. This method allows us to program ferromagnetic domains in complex 3D-printed soft materials, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson's ratios. The actuation speed and power density of our printed soft materials with programmed ferromagnetic domains are orders of magnitude greater than existing 3D-printed active materials. We further demonstrate diverse functions derived from complex shape changes, including reconfigurable soft electronics, a mechanical metamaterial that can jump and a soft robot that crawls, rolls, catches fast-moving objects and transports a pharmaceutical dose.

3.
Phys Rev Lett ; 131(22): 223602, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101366

RESUMO

Coherent light detection and ranging (LIDAR) offers exceptional sensitivity and precision in measuring the distance of remote objects by employing first-order interference. However, the ranging capability of coherent LIDAR is principally constrained by the coherence time of the light source determined by the spectral bandwidth. Here, we introduce coherent two-photon LIDAR, which eliminates the range limitation of coherent LIDAR due to the coherence time. Our scheme capitalizes on the counterintuitive phenomenon of two-photon interference of thermal light, in which the second-order interference fringe remains impervious to the short coherence time of the light source determined by the spectral bandwidth. By combining this feature with transverse two-photon interference of thermal light, we demonstrate distance ranging beyond the coherence time without relying on time-domain interference fringes. Moreover, we show that our coherent two-photon LIDAR scheme is robust to turbulence and ambient noise. This work opens up novel applications of two-photon correlation in classical light.

4.
Semin Neurol ; 43(3): 432-438, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37562456

RESUMO

Advances in robotic technology have improved standard techniques in numerous surgical and endovascular specialties, offering more precision, control, and better patient outcomes. Robotic-assisted interventional neuroradiology is an emerging field at the intersection of interventional neuroradiology and biomedical robotics. Endovascular robotics can automate maneuvers to reduce procedure times and increase its safety, reduce occupational hazards associated with ionizing radiations, and expand networks of care to reduce gaps in geographic access to neurointerventions. To date, many robotic neurointerventional procedures have been successfully performed, including cerebral angiography, intracranial aneurysm embolization, carotid stenting, and epistaxis embolization. This review aims to provide a survey of the state of the art in robotic-assisted interventional neuroradiology, consider their technical and adoption limitations, and explore future developments critical for the widespread adoption of robotic-assisted neurointerventions.


Assuntos
Procedimentos Endovasculares , Aneurisma Intracraniano , Robótica , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Procedimentos Endovasculares/métodos
5.
Phys Rev Lett ; 128(4): 040503, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148150

RESUMO

Weak-value amplification (WVA) provides a way for amplified detection of a tiny physical signal at the expense of a lower detection probability. Despite this trade-off, due to its robustness against certain types of noise, WVA has advantages over conventional measurements in precision metrology. Moreover, it has been shown that WVA-based metrology can reach the Heisenberg limit using entangled resources, but preparing macroscopic entangled resources remains challenging. Here, we demonstrate a novel WVA scheme based on iterative interactions, achieving the Heisenberg-limited precision scaling without resorting to entanglement. This indicates that the perceived advantages of the entanglement-assisted WVA are in fact due to iterative interactions between each particle of an entangled system and a meter, rather than coming from the entanglement itself. Our work opens a practical pathway for achieving the Heisenberg-limited WVA without using fragile and experimentally demanding entangled resources.

6.
Phys Rev Lett ; 129(9): 093601, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083682

RESUMO

The stationary light pulse (SLP) refers to a zero-group-velocity optical pulse in an atomic ensemble prepared by two counterpropagating driving fields. Despite the uniqueness of an optical pulse trapped within an atomic medium without a cavity, observations of SLP so far have been limited to trapping a single optical pulse due to the stringent SLP phase-matching condition, and this has severely hindered the development of SLP-based applications. In this Letter, we first show theoretically that the SLP process in fact supports two phase-matching conditions and we then utilize the result to experimentally demonstrate simultaneous SLP trapping of two optical pulses for the duration from 0.8 to 2.0 µs. The characteristic dissipation time, obtained by the release efficiency measurement from the SLP trapping state, is 1.22 µs, which corresponds to an effective Q factor of 2.9×10^{9}. Our Letter is expected to bring forth interesting SLP-based applications, such as, efficient photon-photon interaction, spatially multimode coherent quantum memory, creation of exotic photonic gas states, etc.

7.
J Oral Maxillofac Surg ; 80(2): 223-230, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34582808

RESUMO

PURPOSE: To review our experiences of descending necrotizing mediastinitis (DNM) secondary to deep neck infection (DNI) and determine appropriate airway management for decreasing mortality and morbidity of patients with DNM. METHODS: Medical records of 20 patients (8 women and 12 men) who had been managed for DNM secondary to DNI between March 2006 and December 2019 were analyzed. Diagnosis and extent of infection were confirmed by computed tomography of the neck and chest. The upper airway was closely monitored with a fiberoptic laryngoscope. Complications were evaluated according to various types of airway management in our serial cases. RESULTS: Five (25%) out of 20 patients died as a result of septic shock and multiorgan failure. None of these patients died of accidental airway obstruction or airway management mishaps. Keeping short-term orotracheal intubation was safe and adequate after the initial surgery. Early tracheotomy was performed for 4 patients and it was significantly associated with mortality (P = .032). Three patients who underwent late tracheotomy had no mortality. Patients with tracheotomy had longer duration of overall hospital stay than those without tracheotomy. CONCLUSIONS: Well-controlled airway management might decrease mortality, hospitalization, and airway complications in patients with DNM secondary to DNI. Keeping orotracheal intubation rather than upfront tracheotomy should be first considered when managing airway along with examination of the upper airway with a fiberoptic laryngoscope.


Assuntos
Mediastinite , Manuseio das Vias Aéreas/efeitos adversos , Drenagem/métodos , Feminino , Humanos , Masculino , Mediastinite/etiologia , Mediastinite/terapia , Pescoço/cirurgia , Necrose , Estudos Retrospectivos , Traqueotomia/efeitos adversos , Traqueotomia/métodos
8.
Adv Funct Mater ; 31(27)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35903441

RESUMO

Natural microbial sensing circuits can be rewired into new gene networks to build living sensors that detect and respond to disease-associated biomolecules. However, synthetic living sensors, once ingested, are cleared from the gastrointestinal (GI) tract within 48 hours; retaining devices in the intestinal lumen is prone to intestinal blockage or device migration. To localize synthetic microbes and safely extend their residence in the GI tract for health monitoring and sustained drug release, an ingestible magnetic hydrogel carrier is developed to transport diagnostic microbes to specific intestinal sites. The magnetic living hydrogel is localized and retained by attaching a magnet to the abdominal skin, resisting the peristaltic waves in the intestine. The device retention is validated in a human intestinal phantom and an in vivo rodent model, showing that the ingestible hydrogel maintains the integrated living bacteria for up to seven days, which allows the detection of heme for GI bleeding in the harsh environment of the gut. The retention of microelectronics is also demonstrated by incorporating a temperature sensor into the magnetic hydrogel carrier.

9.
Opt Express ; 29(2): 2348-2363, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726431

RESUMO

A key technique to perform proper quantum information processing is to get a high visibility quantum interference between independent single photons. One of the crucial elements that affects the quantum interference is a group velocity dispersion that occurs when single photons pass through a dispersive medium. We theoretically and experimentally demonstrate that an effect of group velocity dispersion on the two-photon interference can be cancelled if two independent single photons experience the same amount of pulse broadening. This dispersion cancellation effect can be applied to a multi-path linear interferometer with multiple independent single photons. As multi-path quantum interferometers are at the heart of quantum communication, photonic quantum computing, and boson sampling applications, our work should find wide applicability in quantum information science.

10.
Opt Express ; 28(5): 6929-6936, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225930

RESUMO

BosonSampling is a problem of sampling events according to the transition probabilities of indistinguishable photons in a linear optical network. Computational hardness of BosonSampling depends on photon-number statistics of the input light. BosonSampling with multi-photon Fock states at the input is believed to be classically intractable but there exists an efficient classical algorithm for classical input states. In this paper, we present a mathematical connection between BosonSampling with quantum and classical light inputs. Specifically, we show that the generating function of a transition probability for Fock-state BosonSampling (FBS) can be expressed as a transition probability of thermal-light inputs. The closed-form expression of a thermal-light transition probability allows all possible transition probabilities of FBS to be obtained by calculating a single matrix permanent. Moreover, the transition probability of FBS is shown to be expressed as an integral involving a Gaussian function multiplied by a Laguerre polynomial, resulting in a fast oscillating integrand. Our work sheds new light on computational hardness of FBS by identifying the mathematical connection between BosonSampling with quantum and classical light.

11.
Opt Lett ; 45(7): 1802-1805, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236003

RESUMO

A source of hyper-entangled photons plays a vital role in quantum information processing, owing to its high information capacity. In this Letter, we demonstrate a convenient method to generate polarization and orbital angular momentum (OAM) hyper-entangled photon pairs via spontaneous four-wave mixing (SFWM) in a hot $ ^{87}{\rm Rb} $87Rb atomic vapor. The polarization entanglement is achieved by coherently combining two SFWM paths with the aid of two beam displacers that constitute a phase self-stabilized interferometer, and OAM entanglement is realized by taking advantage of the OAM conservation condition during the SFWM process. Our hyper-entangled biphoton source possesses high brightness and high nonclassicality and may have broad applications in atom-photon-interaction-based quantum networks.

12.
Opt Lett ; 45(24): 6748-6751, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33325887

RESUMO

It has recently been shown that counter-intuitive Franson-like second-order interference can be observed with a pair of classically correlated pseudo thermal light beams and two separate unbalanced interferometers (UIs): the second-order interference visibility remains fixed at 1/3 even though the path length difference in each UI is increased significantly beyond the coherence length of the pseudo thermal light [Phys. Rev. Lett.119, 223603 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.223603]. However, as the pseudo thermal beam itself originated from a long-coherence laser (and by using a rotating ground disk), there exists the possibility of a classical theoretical model to account for second-order interference beyond the coherence time on the long coherence time of the original laser beam. In this work, we experimentally explore this counter-intuitive phenomenon with a true thermal photon source generated via quantum thermalization, i.e., obtaining a mixed state from a pure two-photon entangled state. This experiment not only demonstrates the unique second-order coherence properties of thermal light clearly but may also open up remote sensing applications based on such effects.

13.
Phys Rev Lett ; 124(21): 210401, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530676

RESUMO

Recent quantum technologies utilize complex multidimensional processes that govern the dynamics of quantum systems. We develop an adaptive diagonal-element-probing compression technique that feasibly characterizes any unknown quantum processes using much fewer measurements compared to conventional methods. This technique utilizes compressive projective measurements that are generalizable to an arbitrary number of subsystems. Both numerical analysis and experimental results with unitary gates demonstrate low measurement costs, of order O(d^{2}) for d-dimensional systems, and robustness against statistical noise. Our work potentially paves the way for a reliable and highly compressive characterization of general quantum devices.

14.
Nature ; 575(7781): 58-59, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695214
15.
Opt Express ; 27(24): 34611-34617, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878648

RESUMO

Continuous-variable position-momentum entanglement (or Einstein-Podolsky-Rosen entanglement) of two particles has played important roles in the fundamental study of quantum physics as well as in the progress of quantum information. In this paper, we propose a scheme to generate Einstein-Podolsky-Rosen (EPR) position-momentum entangled photon pairs efficiently via spontaneous four-wave mixing (SFWM) process in a hot rubidium gas cell. The EPR entanglement between the photon pair is measured and characterized by using the ghost interference and the ghost imaging method. Due to the simplicity of the experimental setup and the high photon pair generation rate, our EPR entangled photon source may has potential applications in quantum imaging, hyperentanglement preparation and atomic ensemble based quantum information processing and quantum communication protocols.

16.
Opt Express ; 27(5): 7593-7601, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876321

RESUMO

It has been known that suitably placed external mirrors can enhance and suppress emission of entangled photon pairs in spontaneous parametric down-conversion (SPDC), known as frustrated two-photon creation via interference. In this work, we report periodic revival of frustrated two-photon creation via interference with SPDC pumped by a continuous-wave (cw) multi-mode laser. As the mirrors are translated relative to the position of the SPDC source, the effect of frustrated two-photon creation via interference gradually dies off. However, as the mirrors are translated even further, the effect of frustrated two-photon creation via interference re-appears periodically. Our theoretical and numerical analyses show that this revival phenomenon is due to the nature of cw multi-mode pump laser. This work clearly demonstrates how the properties of the pump laser, in addition to suitably placed external mirrors, can be used to modify the process of spontaneous two-photon emission.

17.
Opt Lett ; 44(2): 447-450, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644922

RESUMO

The development of quantum photonic information technology demands high-quality photon sources. Here we demonstrate a low-noise and high-speed photon source generated by the spontaneous four-wave mixing process in a micro/nanofiber (MNF). The pair generation in a MNF is tailorable by controlling its diameter and designed for creating signal and idler photons in the silicon-based detector wavelength range, yielding high detection efficiency and coincidence count rate. This MNF photon source can be coupled to other fiber systems with negligible coupling loss and can be efficiently exploited as fiber-based quantum light sources for quantum information applications.

18.
Phys Rev Lett ; 122(12): 123607, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978083

RESUMO

In quantum communication and photonic quantum information processing, the requirement of quantum repeaters and quantum memory often imposes a strict bandwidth prerequisite for the entangled photons. At the same time, there is ever more increasing demand for entangling more degrees of freedom, i.e., hyperentanglement, for a photon pair. In this Letter, we report the direct generation of narrow-band orbital angular momentum (OAM) and polarization hyperentangled photons from cold atoms. The narrow-band photon pair is naturally entangled in polarization and OAM, in addition to time-frequency, degrees of freedom due to spin and orbital angular momentum conservation conditions in the spontaneous four-wave mixing process in a cold atom ensemble. The narrow-band hyperentangled photon pair source reported here is expected to play important roles in quantum memory-based long-distance quantum communication.

19.
Nano Lett ; 18(8): 4710-4715, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932664

RESUMO

Single-photon emitters play an essential role in quantum technologies, including quantum computing and quantum communications. Atomic defects in hexagonal boron nitride ( h-BN) have recently emerged as new room-temperature single-photon emitters in solid-state systems, but the development of scalable and tunable h-BN single-photon emitters requires external methods that can control the emission energy of individual defects. Here, by fabricating van der Waals heterostructures of h-BN and graphene, we demonstrate the electrical control of single-photon emission from atomic defects in h-BN via the Stark effect. By applying an out-of-plane electric field through graphene gates, we observed Stark shifts as large as 5.4 nm per GV/m. The Stark shift generated upon a vertical electric field suggests the existence of out-of-plane dipole moments associated with atomic defect emitters, which is supported by first-principles theoretical calculations. Furthermore, we found field-induced discrete modification and stabilization of emission intensity, which were reversibly controllable with an external electric field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA