Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(1): 85-102.e23, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867287

RESUMO

Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Cromossomo X/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Mecanismo Genético de Compensação de Dose , Embrião não Mamífero/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Moleculares , Mutação , Piperidinas/metabolismo , Alinhamento de Sequência , Tiofenos/metabolismo
2.
Cell ; 168(6): 1053-1064.e15, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283061

RESUMO

Cytokines are classically thought to stimulate downstream signaling pathways through monotonic activation of receptors. We describe a severe anemia resulting from a homozygous mutation (R150Q) in the cytokine erythropoietin (EPO). Surprisingly, the EPO R150Q mutant shows only a mild reduction in affinity for its receptor but has altered binding kinetics. The EPO mutant is less effective at stimulating erythroid cell proliferation and differentiation, even at maximally potent concentrations. While the EPO mutant can stimulate effectors such as STAT5 to a similar extent as the wild-type ligand, there is reduced JAK2-mediated phosphorylation of select downstream targets. This impairment in downstream signaling mechanistically arises from altered receptor dimerization dynamics due to extracellular binding changes. These results demonstrate how variation in a single cytokine can lead to biased downstream signaling and can thereby cause human disease. Moreover, we have defined a distinct treatable form of anemia through mutation identification and functional studies.


Assuntos
Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Eritropoetina/genética , Mutação de Sentido Incorreto , Transdução de Sinais , Anemia de Diamond-Blackfan/terapia , Criança , Consanguinidade , Ativação Enzimática , Eritropoese , Eritropoetina/química , Feminino , Humanos , Janus Quinase 2/metabolismo , Cinética , Masculino , Receptores da Eritropoetina/química , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
3.
Nature ; 567(7747): 194-199, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30787435

RESUMO

Cyclic dinucleotides (CDNs) have central roles in bacterial homeostasis and virulence by acting as nucleotide second messengers. Bacterial CDNs also elicit immune responses during infection when they are detected by pattern-recognition receptors in animal cells. Here we perform a systematic biochemical screen for bacterial signalling nucleotides and discover a large family of cGAS/DncV-like nucleotidyltransferases (CD-NTases) that use both purine and pyrimidine nucleotides to synthesize a diverse range of CDNs. A series of crystal structures establish CD-NTases as a structurally conserved family and reveal key contacts in the enzyme active-site lid that direct purine or pyrimidine selection. CD-NTase products are not restricted to CDNs and also include an unexpected class of cyclic trinucleotide compounds. Biochemical and cellular analyses of CD-NTase signalling nucleotides demonstrate that these cyclic di- and trinucleotides activate distinct host receptors and thus may modulate the interaction of both pathogens and commensal microbiota with their animal and plant hosts.


Assuntos
Proteínas de Bactérias/metabolismo , Nucleotídeos/biossíntese , Nucleotídeos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Animais , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/biossíntese , Fosfatos de Dinucleosídeos/metabolismo , Células HEK293 , Humanos , Camundongos , Nucleotídeos/química , Nucleotidiltransferases/genética , Óperon/genética , Simbiose
4.
J Int Neuropsychol Soc ; 29(9): 813-820, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36971238

RESUMO

OBJECTIVES: This study aims to address a gap in the data on cognitive sex differences in persons living with Parkinson disease (PD). There is some evidence that cognitive dysfunction is more severe in male PD, however data on episodic memory and processing speed is incomplete. METHODS: One hundred and sixty-seven individuals with a diagnosis of PD were included in this study. Fifty-six of those individuals identified as female. The California Verbal Learning Test 1st edition and the Wechsler Memory Scale 3rd edition were used to evaluate verbal and visuospatial episodic memory and the Wechsler Adult Intelligence Scale 3rd edition was used to evaluate processing speed. Multivariate analysis of covariance was used to identify sex-specific differences across groups. RESULTS: Our results show that males with PD performed significantly worse than females in verbal and visuospatial recall as well as a trend for the processing speed task of coding. CONCLUSIONS: Our finding of superior performance among females with PD in verbal episodic memory is consistent with reports in both healthy and PD individuals; however, females outperforming males in measures of visuospatial episodic memory is unique to PD. Cognitive deficits preferentially affecting males appear to be associated with frontal lobe-related function. Therefore, males may represent a disease subgroup more susceptible to disease mechanisms affecting frontal lobe deterioration and cognitive disturbances in PD.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Memória Episódica , Doença de Parkinson , Adulto , Humanos , Masculino , Feminino , Doença de Parkinson/complicações , Caracteres Sexuais , Velocidade de Processamento , Transtornos Cognitivos/diagnóstico , Testes Neuropsicológicos
5.
Nature ; 483(7389): 336-40, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22398450

RESUMO

Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Transição de Fase , Proteínas/química , Proteínas/metabolismo , Transdução de Sinais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Biopolímeros/química , Biopolímeros/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Células HeLa , Humanos , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Fosforilação , Domínios Proteicos Ricos em Prolina , Estrutura Quaternária de Proteína , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de src
6.
Proc Natl Acad Sci U S A ; 108(33): E472-9, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21676863

RESUMO

Actin related protein 2/actin related protein 3 (Arp2/3) complex nucleates new actin filaments in eukaryotic cells in response to signals from proteins in the Wiskott-Aldrich syndrome protein (WASP) family. The conserved VCA domain of WASP proteins activates Arp2/3 complex by inducing conformational changes and delivering the first actin monomer of the daughter filament. Previous models of activation have invoked a single VCA acting at a single site on Arp2/3 complex. Here we show that activation most likely involves engagement of two distinct sites on Arp2/3 complex by two VCA molecules, each delivering an actin monomer. One site is on Arp3 and the second is on ARPC1 and Arp2. The VCAs at these sites have distinct roles in activation. Our findings reconcile apparently conflicting literature on VCA activation of Arp2/3 complex and lead to a new model for this process.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Polimerização , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Actinas/metabolismo , Sítios de Ligação , Humanos , Complexos Multiproteicos/química , Ligação Proteica , Multimerização Proteica , Proteína da Síndrome de Wiskott-Aldrich/química
7.
J Virol ; 86(15): 8171-84, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623783

RESUMO

Herpes simplex virus type 1 (HSV-1) enters cells by fusion of its envelope with a host cell membrane, which requires four viral glycoproteins and a cellular receptor. Viral fusion glycoprotein B (gB) mediates membrane fusion through the action of its ectodomain, while its cytoplasmic domain (cytodomain) regulates fusion from the opposite face of the membrane by an unknown mechanism. The gB cytodomain appears to restrict fusion, because point or truncation mutations within it increase the extent of fusion (syn mutations). Previously, we showed that the hyperfusion phenotype correlated with reduced membrane binding in gB syn truncation mutants and proposed that membrane binding was important in regulating fusion. Here, we extended our analysis to three syn point mutants: A855V, R858H, and A874P. These mutations produce local conformational changes, with some affecting membrane interaction, which suggests that while syn mutants may deregulate fusion by somewhat different mechanisms, maintaining the wild-type (WT) conformation is critical for fusion regulation. We further show that the presence of a membrane is necessary for the cytodomain to achieve its fully folded conformation and propose that the membrane-bound form of the cytodomain represents its native conformation. Taken together, our data suggest that the cytodomain of gB regulates fusion by a novel mechanism in which membrane interaction plays a key role.


Assuntos
Herpesvirus Humano 1/metabolismo , Fusão de Membrana , Dobramento de Proteína , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Herpesvirus Humano 1/genética , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética
8.
Proc Natl Acad Sci U S A ; 107(9): 3988-93, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20142501

RESUMO

Metabolic labeling of glycans with synthetic sugar analogs has emerged as an attractive means for introducing nonnatural chemical functionality into glycoproteins. However, the complexities of glycan biosynthesis prevent the installation of nonnatural moieties at defined, predictable locations within glycoproteins at high levels of incorporation. Here, we demonstrate that the conserved N-acetyglucosamine (GlcNAc) residues within chitobiose cores of N-glycans in the model organism Saccharomyces cerevisiae can be specifically targeted for metabolic replacement by unnatural sugars. We introduced an exogenous GlcNAc salvage pathway into yeast, allowing cells to metabolize GlcNAc provided as a supplement to the culture medium. We then rendered the yeast auxotrophic for production of the donor nucleotide-sugar uridine-diphosphate-GlcNAc (UDP-GlcNAc) by deletion of the essential gene GNA1. We demonstrate that gna1Delta strains require a GlcNAc supplement and that expression plasmids containing both exogenous components of the salvage pathway, GlcNAc transporter NGT1 from Candida albicans and GlcNAc kinase NAGK from Homo sapiens, are required for rescue in this context. Further, we show that cells successfully incorporate synthetic GlcNAc analogs N-azidoacetyglucosamine (GlcNAz) and N-(4-pentynoyl)-glucosamine (GlcNAl) into cell-surface glycans and secreted glycoproteins. To verify incorporation of the nonnatural sugars at N-glycan core positions, endoglycosidase H (endoH)-digested peptides from a purified secretory glycoprotein, Ygp1, were analyzed by mass spectrometry. Multiple Ygp1 N-glycosylation sites bearing GlcNAc, isotopically labeled GlcNAc, or GlcNAz were identified; these modifications were dependent on the supplement added to the culture medium. This system enables the production of glycoproteins that are functionalized for specific chemical modifications at their glycosylation sites.


Assuntos
Metabolismo dos Carboidratos , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilglucosamina/metabolismo , Sequência de Aminoácidos , Glicoproteínas/química , Glicoproteínas/metabolismo , Dados de Sequência Molecular , Polissacarídeos/química
9.
Proc Natl Acad Sci U S A ; 107(2): 838-43, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080762

RESUMO

The threat of smallpox as a bioweapon and the emerging threat of human monkeypox, among other poxviral diseases, highlight the need for effective poxvirus countermeasures. ST-246, which targets the F13L protein in vaccinia virus and its homologs in other orthopoxvirus species, provides full protection from lethal poxviral disease in numerous animal models and seems to be safe in humans. All previous evaluations of ST-246 efficacy have been in immunocompetent animals. However, the risk of severe poxviral disease is greater in immunodeficient hosts. Here we report on the efficacy of ST-246 in preventing or treating lethal poxviral disease in immunodeficient mice. After lethal challenge with the Western Reserve strain of vaccinia, Nude, SCID, and J(H) knockout mice additionally depleted of CD4(+) and CD8(+) T cells were not fully protected by ST-246, although survival was significantly extended. However, CD4(+) T cell deficient, CD8(+) T cell deficient, J(H) knockout, and J(H) knockout mice also deficient for CD4(+) or CD8(+) T cells survived lethal challenge when treated with ST-246 starting on the day of challenge. Delaying treatment until 72 h after infection reduced ST-246 efficacy in some models but provided full protection from lethal challenge in most. These findings suggest that ST-246 may be effective in controlling smallpox or other pathogenic orthopoxviruses in some immunodeficient human populations for whom the vaccine is contraindicated.


Assuntos
Antivirais/uso terapêutico , Benzamidas/uso terapêutico , Isoindóis/uso terapêutico , Orthopoxvirus/efeitos dos fármacos , Infecções por Poxviridae/tratamento farmacológico , Poxviridae/efeitos dos fármacos , Animais , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Poxviridae/patogenicidade , Resultado do Tratamento , Ensaio de Placa Viral , Virulência
10.
J Biol Chem ; 286(48): 41776-41785, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21965656

RESUMO

Postsynaptic density-95 is a multidomain scaffolding protein that recruits glutamate receptors to postsynaptic sites and facilitates signal processing and connection to the cytoskeleton. It is the leading member of the membrane-associated guanylate kinase family of proteins, which are defined by the PSD-95/Discs large/ZO-1 (PDZ)-Src homology 3 (SH3)-guanylate kinase domain sequence. We used NMR to show that phosphorylation of conserved tyrosine 397, which occurs in vivo and is located in an atypical helical extension (α3), initiates a rapid equilibrium of docked and undocked conformations. Undocking reduced ligand binding affinity allosterically and weakened the interaction of PDZ3 with SH3 even though these domains are separated by a ~25-residue linker. Additional phosphorylation at two linker sites further disrupted the interaction, implicating α3 and the linker in tuning interdomain communication. These experiments revealed a novel mode of regulation by a detachable PDZ element and offer a first glimpse at the dynamic interaction of PDZ and SH3-guanylate kinase domains in membrane-associated guanylate kinases.


Assuntos
Guanilato Quinases/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Regulação Alostérica/fisiologia , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios PDZ , Fosforilação/fisiologia , Relação Estrutura-Atividade , Domínios de Homologia de src
11.
J Virol ; 83(14): 7004-14, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19439475

RESUMO

The outer capsid of the nonenveloped mammalian reovirus contains 200 trimers of the micro1 protein, each complexed with three copies of the protector protein sigma3. Conformational changes in micro1 following the proteolytic removal of sigma3 lead to release of the myristoylated N-terminal cleavage fragment micro1N and ultimately to membrane penetration. The micro1N fragment forms pores in red blood cell (RBC) membranes. In this report, we describe the interaction of recombinant micro1 trimers and synthetic micro1N peptides with both RBCs and liposomes. The micro1 trimer mediates hemolysis and liposome disruption under conditions that promote the micro1 conformational change, and mutations that inhibit micro1 conformational change in the context of intact virus particles also prevent liposome disruption by particle-free micro1 trimer. Autolytic cleavage to form micro1N is required for hemolysis but not for liposome disruption. Pretreatment of RBCs with proteases rescues hemolysis activity, suggesting that micro1N cleavage is not required when steric barriers are removed. Synthetic myristoylated micro1N peptide forms size-selective pores in liposomes, as measured by fluorescence dequenching of labeled dextrans of different sizes. Addition of a C-terminal solubility tag to the peptide does not affect activity, but sequence substitution V13N or L36D reduces liposome disruption. These substitutions are in regions of alternating hydrophobic residues. Their locations, the presence of an N-terminal myristoyl group, and the full activity of a C-terminally extended peptide, along with circular dichroism data that indicate prevalence of beta-strand secondary structure, suggest a model in which micro1N beta-hairpins assemble in the membrane to form a beta-barrel pore.


Assuntos
Proteínas do Capsídeo/metabolismo , Membrana Celular/metabolismo , Orthoreovirus de Mamíferos/fisiologia , Infecções por Reoviridae/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Membrana Celular/química , Membrana Celular/virologia , Galinhas , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/virologia , Humanos , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Dados de Sequência Molecular , Orthoreovirus de Mamíferos/química , Orthoreovirus de Mamíferos/genética , Conformação Proteica , Processamento de Proteína Pós-Traducional , Infecções por Reoviridae/virologia , Montagem de Vírus
12.
Mol Biol Cell ; 18(7): 2503-10, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17460120

RESUMO

The yeast DASH complex is a heterodecameric component of the kinetochore necessary for accurate chromosome segregation. DASH forms closed rings around microtubules with a large gap between the DASH ring and the microtubule cylinder. We characterized the microtubule-binding properties of limited proteolysis products and subcomplexes of DASH, thus identifying candidate polypeptide extensions involved in establishing the DASH-microtubule interface. The acidic C-terminal extensions of tubulin subunits are not essential for DASH binding. We also measured the molecular mass of DASH rings on microtubules with scanning transmission electron microscopy and found that approximately 25 DASH heterodecamers assemble to form each ring. Dynamic association and relocation of multiple flexible appendages of DASH may allow the kinetochore to translate along the microtubule surface.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/ultraestrutura , Peso Molecular , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/ultraestrutura
13.
J Am Chem Soc ; 131(42): 15555-63, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19799419

RESUMO

Stable isotope-labeling methods, coupled with novel techniques for detecting fast-relaxing NMR signals, now permit detailed investigations of paramagnetic centers of metalloproteins. We have utilized these advances to carry out comprehensive assignments of the hyperfine-shifted (13)C and (15)N signals of the rubredoxin from Clostridium pasteurianum (CpRd) in both its oxidized and reduced states. We used residue-specific labeling (by chemical synthesis) and residue-type-selective labeling (by biosynthesis) to assign signals detected by one-dimensional (15)N NMR spectroscopy, to nitrogen atoms near the iron center. We refined and extended these (15)N assignments to the adjacent carbonyl carbons by means of one-dimensional (13)C[(15)N] decoupling difference experiments. We collected paramagnetic-optimized SuperWEFT (13)C[(13)C] constant time COSY (SW-CT-COSY) data to complete the assignment of (13)C signals of reduced CpRd. By following these (13)C signals as the protein was gradually oxidized, we transferred these assignments to carbons in the oxidized state. We have compared these assignments with hyperfine chemical shifts calculated from available X-ray structures of CpRd in its oxidized and reduced forms. The results allow the evaluation of the X-ray structural models as representative of the solution structure of the protein, and they provide a framework for future investigation of the active site of this protein. The methods developed here should be applicable to other proteins that contain a paramagnetic center with high spin and slow electron exchange.


Assuntos
Clostridium/química , Ressonância Magnética Nuclear Biomolecular/métodos , Rubredoxinas/análise , Isótopos de Carbono/química , Isótopos de Nitrogênio/química , Rubredoxinas/química
14.
Antimicrob Agents Chemother ; 53(12): 4999-5009, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19752270

RESUMO

Orthopoxvirus infections, such as smallpox, can lead to severe systemic disease and result in considerable morbidity and mortality in immunologically naïve individuals. Treatment with ST-246, a small-molecule inhibitor of virus egress, has been shown to provide protection against severe disease and death induced by several members of the poxvirus family, including vaccinia, variola, and monkeypox viruses. Here, we show that ST-246 treatment not only results in the significant inhibition of vaccinia virus dissemination from the site of inoculation to distal organs, such as the spleen and liver, but also reduces the viral load in organs targeted by the dissemination. In mice intranasally infected with vaccinia virus, virus shedding from the nasal and lung mucosa was significantly lower (approximately 22- and 528-fold, respectively) upon ST-246 treatment. Consequently, virus dissemination from the nasal site of replication to the lung also was dramatically reduced, as evidenced by a 179-fold difference in virus levels in nasal versus bronchoalveolar lavage. Furthermore, in ACAM2000-immunized mice, vaccination site swabs showed that ST-246 treatment results in a major (approximately 3,900-fold by day 21) reduction in virus detected at the outside surfaces of lesions. Taken together, these data suggest that ST-246 would play a dual protective role if used during a smallpox bioterrorist attack. First, ST-246 would provide therapeutic benefit by reducing the disease burden and lethality in infected individuals. Second, by reducing virus shedding from those prophylactically immunized with a smallpox vaccine or harboring variola virus infection, ST-246 could reduce the risk of virus transmission to susceptible contacts.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Isoindóis/farmacologia , Infecções por Poxviridae/imunologia , Vaccinia virus/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Benzamidas/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Feminino , Isoindóis/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Orthopoxvirus/efeitos dos fármacos , Orthopoxvirus/imunologia , Orthopoxvirus/patogenicidade , Infecções por Poxviridae/tratamento farmacológico , Infecções por Poxviridae/virologia , Vacina Antivariólica/imunologia , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Replicação Viral/efeitos dos fármacos
15.
J Virol ; 82(7): 3517-29, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18199639

RESUMO

The potential threat of smallpox use in a bioterrorist attack has heightened the need to develop an effective smallpox vaccine for immunization of the general public. Vaccination with the current smallpox vaccine, Dryvax, produces protective immunity but may result in adverse reactions for some vaccinees. A subunit vaccine composed of protective vaccinia virus proteins should avoid the complications arising from live-virus vaccination and thus provide a safer alternative smallpox vaccine. In this study, we assessed the protective efficacy and immunogenicity of a multisubunit vaccine composed of the A27L and D8L proteins from the intracellular mature virus (IMV) form and the B5R protein from the extracellular enveloped virus (EEV) form of vaccinia virus. BALB/c mice were immunized with Escherichia coli-produced A27L, D8L, and B5R proteins in an adjuvant consisting of monophosphoryl lipid A and trehalose dicorynomycolate or in TiterMax Gold adjuvant. Following immunization, mice were either sacrificed for analysis of immune responses or lethally challenged by intranasal inoculation with vaccinia virus strain Western Reserve. We observed that three immunizations either with A27L, D8L, and B5R or with the A27L and B5R proteins alone induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Several linear B-cell epitopes within the three proteins were recognized by sera from the immunized mice. In addition, protein-specific cellular responses were detected in spleens of immunized mice by a gamma interferon enzyme-linked immunospot assay using peptides derived from each protein. Our data suggest that a subunit vaccine incorporating bacterially expressed IMV- and EEV-specific proteins can be effective in stimulating anti-vaccinia virus immune responses and providing protection against lethal virus challenge.


Assuntos
Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/imunologia , Vacina Antivariólica/imunologia , Varíola/prevenção & controle , Proteínas do Envelope Viral/imunologia , Proteínas Virais/imunologia , Proteínas Estruturais Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Fatores Corda/administração & dosagem , Epitopos de Linfócito B/imunologia , Escherichia coli/genética , Feminino , Humanos , Interferon gama/biossíntese , Lipídeo A/administração & dosagem , Lipídeo A/análogos & derivados , Linfócitos/imunologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Poloxaleno/administração & dosagem , Varíola/imunologia , Vacina Antivariólica/genética , Baço/imunologia , Análise de Sobrevida , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
16.
Cell Rep ; 27(4): 1165-1175.e5, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018131

RESUMO

Stimulator of interferon genes (STING) is a key regulator of type I interferon and pro-inflammatory responses during infection, cellular stress, and cancer. Here, we reveal a mechanism for how STING balances activation of IRF3- and NF-κB-dependent transcription and discover that acquisition of discrete signaling modules in the vertebrate STING C-terminal tail (CTT) shapes downstream immunity. As a defining example, we identify a motif appended to the CTT of zebrafish STING that inverts the typical vertebrate signaling response and results in dramatic NF-κB activation and weak IRF3-interferon signaling. We determine a co-crystal structure that explains how this CTT sequence recruits TRAF6 as a new binding partner and demonstrate that the minimal motif is sufficient to reprogram human STING and immune activation in macrophage cells. Together, our results define the STING CTT as a linear signaling hub that can acquire modular motifs to readily adapt downstream immunity.


Assuntos
Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Macrófagos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Conformação Proteica , Especificidade da Espécie , Fator 6 Associado a Receptor de TNF/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Nat Biotechnol ; 20(10): 1044-8, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12244330

RESUMO

A variety of strategies to incorporate unnatural amino acids into proteins have been pursued, but all have limitations with respect to technical accessibility, scalability, applicability to in vivo studies, or site specificity of amino acid incorporation. The ability to selectively introduce unnatural functional groups into specific sites within proteins, in vivo, provides a potentially powerful approach to the study of protein function and to large-scale production of novel proteins. Here we describe a combined genetic selection and screen that allows the rapid evolution of aminoacyl-tRNA synthetase substrate specificity. Our strategy involves the use of an "orthogonal" aminoacyl-tRNA synthetase and tRNA pair that cannot interact with any of the endogenous synthetase-tRNA pairs in Escherichia coli. A chloramphenicol-resistance (Cm(r)) reporter is used to select highly active synthetase variants, and an amplifiable fluorescence reporter is used together with fluorescence-activated cell sorting (FACS) to screen for variants with the desired change in amino acid specificity. Both reporters are contained within a single genetic construct, eliminating the need for plasmid shuttling and allowing the evolution to be completed in a matter of days. Following evolution, the amplifiable fluorescence reporter allows visual and fluorimetric evaluation of synthetase activity and selectivity. Using this system to explore the evolvability of an amino acid binding pocket of a tyrosyl-tRNA synthetase, we identified three new variants that allow the selective incorporation of amino-, isopropyl-, and allyl-containing tyrosine analogs into a desired protein. The new enzymes can be used to produce milligram-per-liter quantities of unnatural amino acid-containing protein in E. coli.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Evolução Molecular Direcionada/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Engenharia de Proteínas/métodos , Aminoácidos/metabolismo , Linhagem Celular , Escherichia coli/classificação , Regulação Bacteriana da Expressão Gênica , Controle de Qualidade , Especificidade da Espécie , Especificidade por Substrato , Tirosina/metabolismo
18.
Cell Cycle ; 16(15): 1414-1429, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28723232

RESUMO

Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Fase G2/fisiologia , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/metabolismo , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Fase G2/genética , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Mutação/genética , Fosforilação , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
19.
Antiviral Res ; 69(2): 86-97, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16343651

RESUMO

Category A arenaviruses as defined by the National Institute of Allergy and Infectious Diseases (NIAID) are human pathogens that could be weaponized by bioterrorists. Many of these deadly viruses require biosafety level-4 (BSL-4) containment for all laboratory work, which limits traditional laboratory high-throughput screening (HTS) for identification of small molecule inhibitors. For those reasons, a related BSL-2 New World arenavirus, Tacaribe virus, 67-78% identical to Junín virus at the amino acid level, was used in a HTS campaign where approximately 400,000 small molecule compounds were screened in a Tacaribe virus-induced cytopathic effect (CPE) assay. Compounds identified in this screen showed antiviral activity and specificity against not only Tacaribe virus, but also the Category A New World arenaviruses (Junín, Machupo, and Guanarito). Drug resistant variants were isolated, suggesting that these compounds act through inhibition of a viral protein, the viral glycoprotein (GP2), and not through cellular toxicity mechanisms. A lead compound, ST-294, has been chosen for drug development. This potent and selective compound, with good bioavailability, demonstrated protective anti-viral efficacy in a Tacaribe mouse challenge model. This series of compounds represent a new class of inhibitors that may warrant further development for potential inclusion in a strategic stockpile.


Assuntos
Antivirais/química , Arenavirus do Novo Mundo/efeitos dos fármacos , Chumbo/química , Proteínas Virais/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/virologia , Chlorocebus aethiops , Efeito Citopatogênico Viral , Febres Hemorrágicas Virais/tratamento farmacológico , Febres Hemorrágicas Virais/virologia , Humanos , Chumbo/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley , Sulfonamidas/química , Sulfonamidas/farmacologia , Ureia/análogos & derivados , Ureia/química , Ureia/farmacologia , Células Vero , Proteínas Virais/metabolismo
20.
Science ; 352(6285): 595-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27056844

RESUMO

Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/agonistas , Linfócitos T/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Células Jurkat , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosforilação , Polimerização , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA