Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(1): 557-569, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248338

RESUMO

Modulation of the human gut microbiome has become an area of interest in the nutraceutical space. We explored the effect of the novel foundational nutrition supplement AG1® on the composition of human microbiota in an in vitro experimental design. Employing the Simulator of Human Intestinal Microbial Ecosystem (SHIME®) model, AG1® underwent digestion, absorption, and subsequent colonic microenvironment simulation under physiologically relevant conditions in healthy human fecal inocula. Following 48 h of colonic simulation, the gut microbiota were described using shallow shotgun, whole genome sequencing. Metagenomic data were used to describe changes in community structure (alpha diversity, beta diversity, and changes in specific taxa) and community function (functional heterogeneity and changes in specific bacterial metabolic pathways). Results showed no significant change in alpha diversity, but a significant effect of treatment and donor and an interaction between the treatment and donor effect on structural heterogeneity likely stemming from the differential enrichment of eight bacterial taxa. Similar findings were observed for community functional heterogeneity likely stemming from the enrichment of 20 metabolic pathways characterized in the gene ontology term database. It is logical to conclude that an acute dose of AG1 has significant effects on gut microbial composition that may translate into favorable effects in humans.

2.
Clin Immunol ; 235: 108766, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34091018

RESUMO

Farnesol is a 15­carbon organic isoprenol synthesized by plants and mammals with anti-oxidant, anti-inflammatory, and neuroprotective activities. We sought to determine whether farnesol treatment would result in protection against murine experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis (MS). We compared disease progression and severity in C57BL/6 mice treated orally with 100 mg/kg/day farnesol solubilized in corn oil to corn-oil treated and untreated EAE mice. Farnesol significantly delayed the onset of EAE (by ~2 days) and dramatically decreased disease severity (~80%) compared to controls. Disease protection by farnesol was associated with a significant reduction in spinal cord infiltration by monocytes-macrophages, dendritic cells, CD4+ T cells, and a significant change in gut microbiota composition, including a decrease in the Firmicutes:Bacteroidetes ratio. The study suggests FOL could protect MS patients against CNS inflammatory demyelination by partially modulating the gut microbiome composition.


Assuntos
Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/prevenção & controle , Farneseno Álcool/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Administração Oral , Animais , Feminino , Camundongos
3.
Mol Genet Metab ; 135(1): 42-46, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896003

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited inborn error of the γ-aminobutyric acid (GABA) metabolism pathway. It results from mutations in the ALDH5A1 gene leading to elevated GABA, γ-hydroxybutyric acid (GHB), succinic semialdehyde (SSA), decreased glutamine and alterations in several other metabolites. The phenotype includes developmental and cognitive delays, hypotonia, seizures, neuropsychiatric morbidity and other nervous system pathologies. The composition of the intestinal flora of patients with SSADHD has not been characterized, and dysbiosis of the gut microbiome may unveil novel treatment paradigms. We investigated the gut microbiome in SSADHD using 16S ribosomal DNA sequencing and unmasked evidence of dysbiosis in both aldh5a1-deficient mice and patients with SSADHD. In the murine model, there was a reduction in α-diversity measurements, and there were 4 phyla, 3 classes, 5 orders, 9 families, and 15 genera that differed, with a total of 17 predicted metabolic pathways altered. In patients, there were changes in Fusobacterium, 3 classes, 4 orders, 11 families, and a predicted alteration in genes associated with the digestive system. We believe this is the first evaluation of microbiome structure in an IEM with a neurometabolic phenotype that is not treated dietarily.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Disbiose , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Disbiose/genética , Humanos , Camundongos , Succinato-Semialdeído Desidrogenase/deficiência
4.
Mol Genet Metab ; 132(1): 1-10, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358495

RESUMO

Inborn errors of metabolism (IEMs) represent monogenic disorders in which specific enzyme deficiencies, or a group of enzyme deficiencies (e.g., peroxisomal biogenesis disorders) result in either toxic accumulation of metabolic intermediates or deficiency in the production of key end-products (e.g., low cholesterol in Smith-Lemli-Opitz syndrome (Gedam et al., 2012 [1]); low creatine in guanidinoacetic acid methyltransferase deficiency (Stromberger, 2003 [2])). Some IEMs can be effectively treated by dietary restrictions (e.g., phenylketonuria (PKU), maple syrup urine disease (MSUD)), and/or dietary intervention to remove offending compounds (e.g., acylcarnitine excretion with the oral intake of l-carnitine in the disorders of fatty acid oxidation). While the IEMs are predominantly monogenic disorders, their phenotypic presentation is complex and pleiotropic, impacting multiple physiological systems (hepatic and neurological function, renal and musculoskeletal impairment, cardiovascular and pulmonary activity, etc.). The metabolic dysfunction induced by the IEMs, as well as the dietary interventions used to treat them, are predicted to impact the gut microbiome in patients, and it is highly likely that microbiome dysbiosis leads to further exacerbation of the clinical phenotype. That said, only recently has the gut microbiome been considered as a potential pathomechanistic consideration in the IEMs. In this review, we overview the function of the gut-brain axis, the crosstalk between these compartments, and the expanding reports of dysbiosis in the IEMs recently reported. The potential use of pre- and probiotics to improve clinical outcomes in IEMs is also highlighted.


Assuntos
Encéfalo/metabolismo , Disbiose/genética , Microbioma Gastrointestinal/genética , Erros Inatos do Metabolismo/genética , Encéfalo/microbiologia , Encéfalo/fisiopatologia , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Intestinos/patologia , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/microbiologia
5.
Mol Genet Metab ; 130(3): 172-178, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32402538

RESUMO

Deficiency of succinate semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1 (ALDH5A1), OMIM 271980, 610045), the second enzyme of GABA degradation, represents a rare autosomal-recessively inherited disorder which manifests metabolically as gamma-hydroxybutyric aciduria. The neurological phenotype includes intellectual disability, autism spectrum, epilepsy and sleep and behavior disturbances. Approximately 70 variants have been reported in the ALDH5A1 gene, half of them being missense variants. In this study, 34 missense variants, of which 22 novel, were evaluated by in silico analyses using PolyPhen2 and SIFT prediction tools. Subsequently, the effect of these variants on SSADH activity was studied by transient overexpression in HEK293 cells. These studies showed severe enzymatic activity impairment for 27 out of 34 alleles, normal activity for one allele and a broad range of residual activities (25 to 74%) for six alleles. To better evaluate the alleles that showed residual activity above 25%, we generated an SSADH-deficient HEK293-Flp-In cell line using CRISPR-Cas9, in which these alleles were stably expressed. This model proved essential in the classification as deficient for one out of the seven studied alleles. For 8 out of 34 addressed alleles, there were discrepant results among the used prediction tools, and/or in correlating the results of the prediction tools with the functional data. In case of diagnostic urgency of missense alleles, we propose the use of the transient transfection model for confirmation of their effect on the SSADH catalytic function, since this model resulted in fast and robust functional characterization for the majority of the tested variants. In selected cases, stable transfections can be considered and may prove valuable.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/patologia , Mutação de Sentido Incorreto , Succinato-Semialdeído Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Simulação por Computador , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Células HEK293 , Humanos , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
6.
Metab Brain Dis ; 35(5): 849-850, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32306187

RESUMO

Upon publication, it was noted that five of the on-line supplementary figures had incorrect figure: figure legend associations. These were supplementary Figs. 6, 7, 14, 15, and 23.

7.
Metab Brain Dis ; 35(4): 601-614, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32172518

RESUMO

Metabolomic characterization of post-mortem tissues (frontal and parietal cortices, pons, cerebellum, hippocampus, cerebral cortex, liver and kidney) derived from a 37 y.o. male patient with succinic semialdehyde dehydrogenase deficiency (SSADHD) was performed in conjunction with four parallel series of control tissues. Amino acids, acylcarnitines, guanidino- species (guanidinoacetic acid, creatine, creatinine) and GABA-related intermediates were quantified using UPLC and mass spectrometric methods that included isotopically labeled internal standards. Amino acid analyses revealed significant elevation of aspartic acid and depletion of glutamine in patient tissues. Evidence for disruption of short-chain fatty acid metabolism, manifest as altered C4OH, C5, C5:1, C5DC (dicarboxylic) and C12OH carnitines, was observed. Creatine and guanidinoacetic acids were decreased and elevated, respectively. GABA-associated metabolites (total GABA, γ-hydroxybutyric acid, succinic semialdehyde, 4-guanidinobutyrate, 4,5-dihydroxyhexanoic acid and homocarnosine) were significantly increased in patient tissues, including liver and kidney. The data support disruption of fat, creatine and amino acid metabolism as a component of the pathophysiology of SSADHD, and underscore the observation that metabolites measured in patient physiological fluids provide an unreliable reflection of brain metabolism.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Aminoácidos/metabolismo , Encéfalo/metabolismo , Carnitina/análogos & derivados , Creatina/metabolismo , Creatinina/metabolismo , Deficiências do Desenvolvimento/metabolismo , Glicina/análogos & derivados , Succinato-Semialdeído Desidrogenase/deficiência , Ácido gama-Aminobutírico/análogos & derivados , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Encéfalo/patologia , Carnitina/metabolismo , Deficiências do Desenvolvimento/patologia , Glicina/metabolismo , Humanos , Masculino , Metabolômica , Succinato-Semialdeído Desidrogenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
J Int Soc Sports Nutr ; 21(1): 2409682, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39352252

RESUMO

BACKGROUND: This study aimed to examine the effect of a commercially available multi-ingredient powder (AG1Ⓡ) on the gut microbiome and assess the impact of AG1Ⓡ on GI tolerability and other clinical safety markers in healthy men and women. METHODS: Using a double-blind, randomized, two-arm, placebo-controlled, parallel design, we examined a 4-week daily supplementation regimen of AG1Ⓡ vs. placebo (PL). Fifteen men and 15 women provided stool samples for microbiome analysis, questionnaires for digestive quality of life (DQLQ), and completed visual analog scales (VAS) and Bristol stool charts to assess stool consistency and bowel frequency before and after the 4-week intervention. Participant's blood work (CBC, CMP, and lipid panel) was also assessed before and after the 4-week intervention. Alpha diversity was determined by Shannon and Chao1 index scores and evaluated by a two-way ANOVA, beta diversity in taxonomic abundances and functional pathways was visualized using partial least squares-discriminant analyses and statistically evaluated by PERMANOVA. To identify key biomarkers, specific feature differences in taxonomic relative abundance and normalized functional pathway counts were analyzed by linear discriminant analysis (LDA) effect size (LEfSe). Questionnaires, clinical safety markers, and hemodynamics were evaluated by mixed factorial ANOVAs with repeated measures. This study was registered on clinicaltrials.gov (NCT06181214). RESULTS: AG1Ⓡ supplementation enriched two probiotic taxa (Lactobacillus acidophilus and Bifidobacterium bifidum) that likely stem from the probiotics species that exist in the product, as well as L. lactis CH_LC01 and Acetatifactor sp900066565 ASM1486575v1 while reducing Clostridium sp000435835. Regarding community function, AG1Ⓡ showed an enrichment of two functional pathways while diminishing none. Alternatively, the PL enriched six, but diminished five functional pathways. Neither treatment negatively impacted the digestive quality of life via DQLQ, bowel frequency via VAS, or stool consistency via VAS and Bristol. However, there may have been a greater improvement in the DQLQ score (+62.5%, p = 0.058, d = 0.73) after four weeks of AG1Ⓡ supplementation compared to a reduction (-50%) in PL. Furthermore, AG1Ⓡ did not significantly alter clinical safety markers following supplementation providing evidence for its safety profile. CONCLUSIONS: AG1Ⓡ can be consumed safely by healthy adults over four weeks with a potential beneficial impact in their digestive symptom quality of life.


Assuntos
Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Probióticos , Qualidade de Vida , Humanos , Método Duplo-Cego , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Feminino , Adulto , Fezes/microbiologia , Probióticos/administração & dosagem , Adulto Jovem , Pessoa de Meia-Idade
9.
Microorganisms ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065031

RESUMO

Nutritional interventions to reduce gastrointestinal (GI) permeability are of significant interest to physically active adults and those experiencing chronic health conditions. This in vitro study was designed to assess the impact of AG1, a novel synbiotic, on GI permeability following an inflammatory challenge. Interventions [AG1 (vitamins/minerals, pre-/probiotics, and phytonutrients) and control (control medium)] were fed separately into a human GI tract model (stomach, small intestine, and colon). In the colonic phase, the GI contents were combined with fecal inocula from three healthy human donors. GI permeability was evaluated with transepithelial electrical resistance (TEER) in a Caco-2 (apical)/THP1-Blue™ (basolateral) co-culture model. The apical side received sodium butyrate (positive control) or Caco-2 complete medium (negative control) during baseline testing. In the 24 h experiment, the apical side received colonic simulation isolates from the GI model, and the basolateral side was treated with Caco-2 complete medium, then 6 h treatment with lipopolysaccharide. TEER was assessed at 0 h and 24 h, and inflammatory markers were measured at 30 h in triplicate. Paired samples t-tests were used to evaluate endpoint mean difference (MD) for AG1 vs. control. TEER was higher for AG1 (mean ± SD: 99.89 ± 1.32%) vs. control (mean ± SD: 92.87 ± 1.22%) following activated THP1-induced damage [MD: 7.0% (p < 0.05)]. AG1 maintained TEER similar to the level of the negative control [-0.1% (p = 0.02)]. No differences in inflammatory markers were observed. These in vitro data suggest that acute supplementation with AG1 might stimulate protective effects on GI permeability. These changes may be driven by SCFA production due to the pre-/probiotic properties of AG1, but more research is needed.

10.
Nutrients ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447166

RESUMO

Human nutrition, and what can be considered "ideal" nutrition, is a complex, multi-faceted topic which many researchers and practitioners deliberate. While some attest that basic human nutrition is relatively understood, it is undeniable that a global nutritional problem persists. Many countries struggle with malnutrition or caloric deficits, while others encounter difficulties with caloric overconsumption and micronutrient deficiencies. A multitude of factors contribute to this global problem. Limitations to the current scope of the recommended daily allowances (RDAs) and dietary reference intakes (DRIs), changes in soil quality, and reductions in nutrient density are just a few of these factors. In this article, we propose a new, working approach towards human nutrition designated "Foundational Nutrition". This nutritional lens combines a whole food approach in conjunction with micronutrients and other nutrients critical for optimal human health with special consideration given to the human gut microbiome and overall gut health. Together, this a synergistic approach which addresses vital components in nutrition that enhances the bioavailability of nutrients and to potentiate a bioactive effect.


Assuntos
Dieta , Desnutrição , Humanos , Estado Nutricional , Recomendações Nutricionais , Desnutrição/prevenção & controle , Nutrientes , Micronutrientes
11.
Front Nutr ; 10: 1279925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37899823

RESUMO

Nutrient synergy refers to the concept that the combined effects of two or more nutrients working together have a greater physiological impact on the body than when each nutrient is consumed individually. While nutrition science traditionally focuses on isolating single nutrients to study their effects, it is recognized that nutrients interact in complex ways, and their combined consumption can lead to additive effects. Additionally, the Dietary Reference Intakes (DRIs) provide guidelines to prevent nutrient deficiencies and excessive intake but are not designed to assess the potential synergistic effects of consuming nutrients together. Even the term synergy is often applied in different manners depending on the scientific discipline. Considering these issues, the aim of this narrative review is to investigate the potential health benefits of consuming different nutrients and nutrient supplements in combination, a concept we define as nutrient synergy, which has gained considerable attention for its impact on overall well-being. We will examine how nutrient synergy affects major bodily systems, influencing systemic health. Additionally, we will address the challenges associated with promoting and conducting research on this topic, while proposing potential solutions to enhance the quality and quantity of scientific literature on nutrient synergy.

12.
Clin Transl Sci ; 16(10): 1779-1790, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639334

RESUMO

Green tea is a popular beverage worldwide. The abundant green tea catechin (-)-epigallocatechin gallate (EGCG) is a potent in vitro inhibitor of intestinal UDP-glucuronosyltransferase (UGT) activity (Ki ~2 µM). Co-consuming green tea with intestinal UGT drug substrates, including raloxifene, could increase systemic drug exposure. The effects of a well-characterized green tea on the pharmacokinetics of raloxifene, raloxifene 4'-glucuronide, and raloxifene 6-glucuronide were evaluated in 16 healthy adults via a three-arm crossover, fixed-sequence study. Raloxifene (60 mg) was administered orally with water (baseline), with green tea for 1 day (acute), and on the fifth day after daily green tea administration for 4 days (chronic). Unexpectedly, green tea decreased the geometric mean green tea/baseline raloxifene AUC0-96h ratio to ~0.60 after both acute and chronic administration, which is below the predefined no-effect range (0.75-1.33). Lack of change in terminal half-life and glucuronide-to-raloxifene ratios indicated the predominant mechanism was not inhibition of intestinal UGT. One potential mechanism includes inhibition of intestinal transport. Using established transfected cell systems, a green tea extract normalized to EGCG inhibited 10 of 16 transporters tested (IC50 , 0.37-12 µM). Another potential mechanism, interruption by green tea of gut microbe-mediated raloxifene reabsorption, prompted a follow-up exploratory clinical study to evaluate the potential for a green tea-gut microbiota-drug interaction. No clear mechanisms were identified. Overall, results highlight that improvements in current models and methods used to predict UGT-mediated drug interactions are needed. Informing patients about the risk of co-consuming green tea with raloxifene may be considered.


Assuntos
Catequina , Chá , Adulto , Humanos , Catequina/farmacologia , Interações Medicamentosas , Glucuronídeos , Cloridrato de Raloxifeno/farmacologia , Chá/química , Estudos Cross-Over
13.
Curr Protoc ; 1(12): e314, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870901

RESUMO

Microbiome composition studies are increasingly shedding light on animal models of disease. This paper describes a protocol for analyzing the gut microbiome composition prior to and after the induction of mice to experimental autoimmune encephalomyelitis (EAE), the principal animal model of the human neuroinflammatory demyelinating disease multiple sclerosis (MS). We also address and provide data assessing the impact of mice reared in different animal facilities on EAE induction. Furthermore, we discuss potential regulators of the gut-microbiome-brain axis (GMBA) in relation to neuroinflammation and implications on demyelinating disease states. Our results suggest that mice reared in different animal facilities produce different levels of EAE induction. These results highlight the importance of accounting for consistent environmental conditions when inducing EAE and other animal models of disease. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Study of the composition of the gut microbiome in the neuroinflammatory model of experimental autoimmune encephalomyelitis Basic Protocol 2: Experimental procedures for DNA extraction and microbiome analysis.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Animais , Modelos Animais de Doenças , Camundongos , Doenças Neuroinflamatórias
14.
J Child Neurol ; 36(13-14): 1177-1188, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33557678

RESUMO

This study has extended previous metabolic measures in postmortem tissues (frontal and parietal lobes, pons, cerebellum, hippocampus, and cerebral cortex) obtained from a 37-year-old male patient with succinic semialdehyde dehydrogenase deficiency (SSADHD) who expired from SUDEP (sudden unexplained death in epilepsy). Histopathologic characterization of fixed cortex and hippocampus revealed mild to moderate astrogliosis, especially in white matter. Analysis of total phospholipid mass in all sections of the patient revealed a 61% increase in cortex and 51% decrease in hippocampus as compared to (n = 2-4) approximately age-matched controls. Examination of mass and molar composition of major phospholipid classes showed decreases in phospholipids enriched in myelin, such as phosphatidylserine, sphingomyelin, and ethanolamine plasmalogen. Evaluation of gene expression (RT2 Profiler PCR Arrays, GABA, glutamate; Qiagen) revealed dysregulation in 14/15 GABAA receptor subunits in cerebellum, parietal, and frontal lobes with the most significant downregulation in ∊, θ, ρ1, and ρ2 subunits (7.7-9.9-fold). GABAB receptor subunits were largely unaffected, as were ionotropic glutamate receptors. The metabotropic glutamate receptor 6 was consistently downregulated (maximum 5.9-fold) as was the neurotransmitter transporter (GABA), member 13 (maximum 7.3-fold). For other genes, consistent dysregulation was seen for interleukin 1ß (maximum downregulation 9.9-fold) and synuclein α (maximal upregulation 6.5-fold). Our data provide unique insight into SSADHD brain function, confirming astrogliosis and lipid abnormalities previously observed in the null mouse model while highlighting long-term effects on GABAergic/glutamatergic gene expression in this disorder.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Expressão Gênica/genética , Lipídeos/análise , Succinato-Semialdeído Desidrogenase/deficiência , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Autopsia , Deficiências do Desenvolvimento/metabolismo , Humanos , Masculino , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
15.
Orphanet J Rare Dis ; 15(1): 261, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967698

RESUMO

BACKGROUND: Previous work has identified age-related negative correlations for γ-hydroxybutyric acid (GHB) and γ-aminobutyric acid (GABA) in plasma of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD). Using plasma and dried blood spots (DBS) collected in an ongoing natural history study, we tested the hypothesis that other biomarkers would follow a similar age-related negative correlation as seen for GHB/GABA. Samples (mixed sex) included: patients (n = 21 unique samples, 1-39.5 yrs) and parallel controls (n = 9 unique samples, 8.4-34.8 yrs). Archival control data (DBS only; n = 171, 0.5-39.9 yrs) was also included. RESULTS: Metabolites assessed included amino acids (plasma, DBS) and acylcarnitines, creatine, creatinine, and guanidinoacetate (DBS only). Age-related negative correlations for glycine (plasma, DBS) and sarcosine (N-methylglycine, plasma) were detected, accompanied by elevated proline and decreased levels of succinylacetone, argininosuccinate, formaminoglutamate, and creatinine. Significantly low acylcarnitines were detected in patients across all chain lengths (short-, medium- and long-chain). Significant age-dependent positive correlations for selected acylcarnitines (C6-, C12DC(dicarboxylic)-, C16-, C16:1-, C18:1-, C18:2OH-carnitines) were detected in patients and absent in controls. Receiver operating characteristic (ROC) curves for all binary comparisons revealed argininosuccinate and succinylacetone to be the most discriminating biomarkers (area > 0.92). CONCLUSIONS: Age-dependent acylcarnitine correlations may represent metabolic compensation responsive to age-related changes in GHB and GABA. Our study highlights novel biomarkers in SSADHD and expands the metabolic pathophysiology of this rare disorder of GABA metabolism.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Plasma , Succinato-Semialdeído Desidrogenase/deficiência , Adolescente , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Biomarcadores , Criança , Pré-Escolar , Deficiências do Desenvolvimento/sangue , Deficiências do Desenvolvimento/diagnóstico , Humanos , Lactente , Succinato-Semialdeído Desidrogenase/sangue , Adulto Jovem
16.
Med Sci (Basel) ; 6(3)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149548

RESUMO

Recently, there has been a substantial increase in the number of studies focused upon connecting the gut microbiome with cases of central nervous system (CNS) autoimmunity. Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder of the CNS. Recent experimental and clinical evidence suggests the presence of microbial imbalances in the gut of MS sufferers. The gut microbiome is defined as the summation of all the microbial entities as well as their genes, proteins, and metabolic products in a given space and time. Studies show the MS gut microbiome as having general alterations in specific taxa, some associated with the promotion of inflammatory cytokines and overall inflammation. In conjunction with these findings, experimental models of the disease have reported that T regulatory (Treg) cells have deficits in their function as a result of the aberrant gut microbiota composition. The findings suggest that the interactions between the host and the microbiota are reciprocal, although more extensive work is required to confirm this. Moreover, evidence indicates that changes in microbiota composition may result in imbalances that could result in disease, with the gut as a potential novel therapeutic avenue. By understanding the biological effects of aberrant gut microbiome composition, it is possible to contemplate current therapeutic options and their efficacy. Ultimately, more research is necessary in this field, but targeting the gut microbiota may lead to the development of novel therapeutic strategies.

17.
Artigo em Inglês | MEDLINE | ID: mdl-29311123

RESUMO

The microbiome can be defined as the sum of the microbial and host's genome. Recent information regarding this complex organ suggests that in animal models of multiple sclerosis (MS), the composition of the gut microbiome can be altered, giving rise to both the effector and regulatory phases of central nervous system (CNS) demyelination. Experimental findings during the past decade in animal models of MS have provided clear evidence for the significant role of gut microbes in both the effector and regulatory phase of this condition. There is mounting evidence in preliminary human studies suggesting that a dysbiotic MS gut microbiome could affect disease progression. We propose considering the gut microbiome as a key organ for the regulation of tolerance mechanisms and speculate that the gut microbiome is the major environmental risk factor for CNS demyelinating disease. Accordingly, we hypothesize that intervention of the gut microbiome could result in safer novel therapeutic strategies to treat MS.


Assuntos
Microbioma Gastrointestinal/fisiologia , Esclerose Múltipla/microbiologia , Esclerose Múltipla/fisiopatologia , Animais , Progressão da Doença , Humanos , Esclerose Múltipla/imunologia , Neuroimunomodulação
18.
Gut Microbes ; 8(6): 561-573, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28708466

RESUMO

The gut microbiome plays an important role in the development of inflammatory disease as shown using experimental models of central nervous system (CNS) demyelination. Gut microbes influence the response of regulatory immune cell populations in the gut-associated lymphoid tissue (GALT), which drive protection in acute and chronic experimental autoimmune encephalomyelitis (EAE). Recent observations suggest that communication between the host and the gut microbiome is bidirectional. We hypothesized that the gut microbiota differs between the acute inflammatory and chronic progressive stages of a murine model of secondary-progressive multiple sclerosis (SP-MS). This non-obese diabetic (NOD) model of EAE develops a biphasic pattern of disease that more closely resembles the human condition when transitioning from relapsing-remitting (RR)-MS to SP-MS. We compared the gut microbiome of NOD mice with either mild or severe disease to that of non-immunized control mice. We found that the mice which developed a severe secondary form of EAE harbored a dysbiotic gut microbiome when compared with the healthy control mice. Furthermore, we evaluated whether treatment with a cocktail of broad-spectrum antibiotics would modify the outcome of the progressive stage of EAE in the NOD model. Our results indicated reduced mortality and clinical disease severity in mice treated with antibiotics compared with untreated mice. Our findings support the hypothesis that there are reciprocal effects between experimental CNS inflammatory demyelination and modification of the microbiome providing a foundation for the establishment of early therapeutic interventions targeting the gut microbiome that could potentially limit disease progression.


Assuntos
Fenômenos Fisiológicos Bacterianos , Modelos Animais de Doenças , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Esclerose Múltipla/microbiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Progressão da Doença , Disbiose/tratamento farmacológico , Disbiose/prevenção & controle , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/microbiologia , Encefalomielite Autoimune Experimental/prevenção & controle , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Imunomodulação , Camundongos , Camundongos Endogâmicos NOD , Fragmentos de Peptídeos/farmacologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA