Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(3): 688-701.e16, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32315618

RESUMO

Impairment of protein phosphatases, including the family of serine/threonine phosphatases designated PP2A, is essential for the pathogenesis of many diseases, including cancer. The ability of PP2A to dephosphorylate hundreds of proteins is regulated by over 40 specificity-determining regulatory "B" subunits that compete for assembly and activation of heterogeneous PP2A heterotrimers. Here, we reveal how a small molecule, DT-061, specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate selective substrates, such as its well-known oncogenic target, c-Myc. Our 3.6 Å structure identifies molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme and highlight inherent mechanisms of PP2A complex assembly. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for therapeutic targeting, and aid in the development of phosphatase-based therapeutics tailored against disease specific phospho-protein targets.


Assuntos
Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Ativadores de Enzimas/metabolismo , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteína Fosfatase 2/química , Subunidades Proteicas
2.
Biochem Biophys Res Commun ; 671: 343-349, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37329657

RESUMO

Hydroxyl radical protein footprinting (HRPF) using synchrotron radiation is a well-validated method to assess protein structure in the native solution state. In this method, X-ray radiolysis of water generates hydroxyl radicals that can react with solvent accessible side chains of proteins, with mass spectrometry used to detect the resulting labeled products. An ideal footprinting dose provides sufficient labeling to measure the structure but not so much as to influence the results. The optimization of hydroxyl radical dose is typically performed using an indirect Alexa488 fluorescence assay sensitive to hydroxyl radical concentration, but full evaluation of the experiment's outcome relies upon bottom-up liquid chromatography mass spectrometry (LC-MS) measurements to directly determine sites and extent of oxidative labeling at the peptide and protein level. A direct evaluation of the extent of labeling to provide direct and absolute measurements of dose and "safe" dose ranges in terms of, for example, average numbers of labels per protein, would provide immediate feedback on experimental outcomes prior to embarking on detailed LC-MS analyses. To this end, we describe an approach to integrate intact MS screening of labeled samples immediately following exposure, along with metrics to quantify the extent of observed labeling from the intact mass spectra. Intact MS results on the model protein lysozyme were evaluated in the context of Alexa488 assay results and a bottom-up LC-MS analysis of the same samples. This approach provides a basis for placing delivered hydroxyl radical dose metrics on firmer technical grounds for synchrotron X-ray footprinting of proteins, with explicit parameters to increase the likelihood of a productive experimental outcome. Further, the method directs approaches to provide absolute and direct dosimetry for all types of labeling for protein footprinting.


Assuntos
Radical Hidroxila , Pegadas de Proteínas , Pegadas de Proteínas/métodos , Conformação Proteica , Proteínas/química , Espectrometria de Massas/métodos
3.
PLoS Pathog ; 17(6): e1009642, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138981

RESUMO

There is a limited understanding of structural attributes that encode the iatrogenic transmissibility and various phenotypes of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD). Here we report the detailed structural differences between major sCJD MM1, MM2, and VV2 prions determined with two complementary synchrotron hydroxyl radical footprinting techniques-mass spectrometry (MS) and conformation dependent immunoassay (CDI) with a panel of Europium-labeled antibodies. Both approaches clearly demonstrate that the phenotypically distant prions differ in a major way with regard to their structural organization, and synchrotron-generated hydroxyl radicals progressively inhibit their seeding potency in a strain and structure-specific manner. Moreover, the seeding rate of sCJD prions is primarily determined by strain-specific structural organization of solvent-exposed external domains of human prion particles that control the seeding activity. Structural characteristics of human prion strains suggest that subtle changes in the organization of surface domains play a critical role as a determinant of human prion infectivity, propagation rate, and targeting of specific brain structures.


Assuntos
Síndrome de Creutzfeldt-Jakob , Proteínas PrPSc/química , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Humanos , Proteínas PrPSc/metabolismo , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas
4.
Anal Chem ; 94(27): 9819-9825, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35763792

RESUMO

Protein footprinting with mass spectrometry is an established structural biology technique for mapping solvent accessibility and assessing molecular-level interactions of proteins. In hydroxyl radical protein footprinting (HRPF), hydroxyl (OH) radicals generated by water radiolysis or other methods covalently label protein side chains. Because of the wide dynamic range of OH reactivity, not all side chains are easily detected in a single experiment. Novel reagent development and the use of radical chain reactions for labeling, including trifluoromethyl radicals, is a potential approach to normalize the labeling across a diverse set of residues. HRPF in the presence of a trifluoromethylation reagent under the right conditions could provide a "one-pot" reaction for multiplex labeling of protein side chains. Toward this goal, we have systematically evaluated amino acid labeling with the recently investigated Langlois' reagent (LR) activated by X-ray-mediated water radiolysis, followed by three different mass spectrometry methods. We compared the reactivity of CF3 and OH radical labeling for all 20 protein side chains in a competition-free environment. We found that all 20 amino acids exhibited CF3 or OH labeling in LR. Our investigations provide the evidence and knowledge set to perfect hydroxyl radical-activated trifluoromethyl chemistry as "one-pot" reaction for multiplex labeling of protein side chains to achieve higher resolution in HRPF.


Assuntos
Aminoácidos , Pegadas de Proteínas , Aminoácidos/química , Radical Hidroxila/química , Oxirredução , Conformação Proteica , Pegadas de Proteínas/métodos , Proteínas/análise , Água
5.
Proc Natl Acad Sci U S A ; 116(47): 23527-23533, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685617

RESUMO

Telomeres cap the ends of linear chromosomes and terminate in a single-stranded DNA (ssDNA) overhang recognized by POT1-TPP1 heterodimers to help regulate telomere length homeostasis. Here hydroxyl radical footprinting coupled with mass spectrometry was employed to probe protein-protein interactions and conformational changes involved in the assembly of telomere ssDNA substrates of differing lengths bound by POT1-TPP1 heterodimers. Our data identified environmental changes surrounding residue histidine 266 of POT1 that were dependent on telomere ssDNA substrate length. We further determined that the chronic lymphocytic leukemia-associated H266L substitution significantly reduced POT1-TPP1 binding to short ssDNA substrates; however, it only moderately impaired the heterodimer binding to long ssDNA substrates containing multiple protein binding sites. Additionally, we identified a telomerase inhibitory role when several native POT1-TPP1 proteins coat physiologically relevant lengths of telomere ssDNA. This POT1-TPP1 complex-mediated inhibition of telomerase is abrogated in the context of the POT1 H266L mutation, which leads to telomere overextension in a malignant cellular environment.


Assuntos
DNA de Cadeia Simples/metabolismo , Mutação de Sentido Incorreto , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Substituição de Aminoácidos , Sistemas CRISPR-Cas , Células HCT116 , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética
6.
Phys Chem Chem Phys ; 22(47): 27581-27589, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33236741

RESUMO

Polo-like kinase 1 (PLK1) is a key regulator and coordinator for mitotic signaling that contains two major functional units of a kinase domain (KD) and a polo-box domain (PBD). While individual domain structures of the KD and the PBD are known, how they interact and assemble into a functional complex remains an open question. The structural model from the KD-PBD-Map205PBM heterotrimeric crystal structure of zebrafish PLK1 represents a major step in understanding the KD and the PBD interactions. However, how these two domains interact when connected by a linker in the full length PLK1 needs further investigation. By integrating different sources of structural data from small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational sampling, here we report an overall architecture for PLK1 multidomain assembly between the KD and the PBD. Our model revealed that the KD uses its C-lobe to interact with the PBD via the site near the phosphopeptide binding site in its auto-inhibitory state in solution. Disruption of this auto-inhibition via site-directed mutagenesis at the KD-PBD interface increases its kinase activity, supporting the functional role of KD-PBD interactions predicted for regulating the PLK1 kinase function. Our results indicate that the full length human PLK1 takes dynamic structures with a variety of domain-domain interfaces in solution.


Assuntos
Proteínas de Ciclo Celular/química , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Animais , Proteínas de Ciclo Celular/genética , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Peixe-Zebra , Quinase 1 Polo-Like
7.
J Biol Chem ; 293(48): 18494-18503, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30275016

RESUMO

Prion diseases are neurodegenerative disorders that affect many mammalian species. Mammalian prion proteins (PrPs) can misfold into many different aggregates. However, only a small subpopulation of these structures is infectious. One of the major unresolved questions in prion research is identifying which specific structural features of these misfolded protein aggregates are important for prion infectivity in vivo Previously, two types of proteinase K-resistant, self-propagating aggregates were generated from the recombinant mouse prion protein in the presence of identical cofactors. Although these two aggregates appear biochemically very similar, they have dramatically different biological properties, with one of them being highly infectious and the other one lacking any infectivity. Here, we used several MS-based structural methods, including hydrogen-deuterium exchange and hydroxyl radical footprinting, to gain insight into the nature of structural differences between these two PrP aggregate types. Our experiments revealed a number of specific differences in the structure of infectious and noninfectious aggregates, both at the level of the polypeptide backbone and quaternary packing arrangement. In particular, we observed that a high degree of order and stability of ß-sheet structure within the entire region between residues ∼89 and 227 is a primary attribute of infectious PrP aggregates examined in this study. By contrast, noninfectious PrP aggregates are characterized by markedly less ordered structure up to residue ∼167. The structural constraints reported here should facilitate development of experimentally based high-resolution structural models of infectiosus mammalian prions.


Assuntos
Príons/química , Príons/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/química , Biocatálise , Espectrometria de Massas , Camundongos , Oxirredução , Príons/síntese química , Príons/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Estrutura Secundária de Proteína
8.
Breast Cancer Res ; 21(1): 138, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805991

RESUMO

BACKGROUND: The tumor suppressor actions of hexamethylene bis-acetamide (HMBA)-inducible protein 1 (HEXIM1) in the breast, prostate, melanomas, and AML have been reported by our group and others. Increased HEXIM1 expression caused differentiation and inhibited proliferation and metastasis of cancer cells. Historically, HEXIM1 has been experimentally induced with the hybrid polar compound HMBA, but HMBA is a poor clinical candidate due to lack of a known target, poor pharmacological properties, and unfavorable ADMETox characteristics. Thus, HEXIM1 induction is an intriguing therapeutic approach to cancer treatment, but requires better chemical tools than HMBA. METHODS: We identified and verified KDM5B as a target of HEXIM1 inducers using a chemical proteomics approach, biotin-NeutrAvidin pull-down assays, surface plasmon resonance, and molecular docking. The regulation of HEXIM1 by KDM5B and KDM5B inhibitors was assessed using chromatin immunoprecipitation assays, RT-PCR, western blotting, and depletion of KDM5B with shRNAs. The regulation of breast cancer cell phenotype by KDM5B inhibitors was assessed using western blots, differentiation assays, proliferation assays, and a mouse model of breast cancer metastasis. The relative role of HEXIM1 in the action of KDM5B inhibitors was determined by depleting HEXIM1 using shRNAs followed by western blots, differentiation assays, and proliferation assays. RESULTS: We have identified a highly druggable target, KDM5B, which is inhibited by small molecule inducers of HEXIM1. RNAi knockdown of KDM5B induced HEXIM1 expression, thus validating the specific negative regulation of tumor suppressor HEXIM1 by the H3K4me3/2 demethylase KDM5B. Known inhibitors of KDM5B were also able to induce HEXIM1 expression, inhibit cell proliferation, induce differentiation, potentiate sensitivity to cancer chemotherapy, and inhibit breast tumor metastasis. CONCLUSION: HMBA and 4a1 induce HEXIM1 expression by inhibiting KDM5B. Upregulation of HEXIM1 expression levels plays a critical role in the inhibition of proliferation of breast cancer cells using KDM5B inhibitors. Based on the novel molecular scaffolds that we identified which more potently induced HEXIM1 expression and data in support that KDM5B is a target of these compounds, we have opened up new lead discovery and optimization directions.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Biomarcadores Tumorais , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Estimativa de Kaplan-Meier , Modelos Moleculares , Estadiamento de Neoplasias , Proteínas Nucleares/química , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/química , Recidiva , Proteínas Repressoras/química , Relação Estrutura-Atividade , Fatores de Transcrição/química
9.
Nat Chem Biol ; 13(6): 624-632, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346406

RESUMO

Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , Bibliotecas de Moléculas Pequenas , Animais , Sítios de Ligação , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Camundongos Obesos , Modelos Biológicos , Estrutura Molecular , Peso Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
10.
Mol Cell Proteomics ; 14(4): 1159-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687570

RESUMO

Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca(+2)-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes.


Assuntos
Calmodulina/química , Radical Hidroxila/metabolismo , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Aminoácidos/metabolismo , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Íons , Cinética , Oxirredução , Peptídeos/metabolismo , Análise de Regressão , Reprodutibilidade dos Testes
11.
Infect Immun ; 84(5): 1446-1456, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26930710

RESUMO

We previously identified a cell wall-associated protein from Fusobacterium nucleatum, a Gram-negative bacterium of the oral cavity, that induces human beta defensin 2 (hBD-2) in primary human oral epithelial cells (HOECs) and designated it FAD-I (Fusobacterium-associated defensin inducer). Here, we report differential induction of hBD-2 by different strains of F. nucleatum; ATCC 25586 and ATCC 23726 induce significantly more hBD-2 mRNA than ATCC 10953. Heterologous expression of plasmid-borne fadI from the highly hBD-2-inducing strains in a ΔfadI mutant of ATCC 10953 resulted in hBD-2 induction to levels comparable to those of the highly inducing strains, indicating that FAD-I is the principal F. nucleatum agent for hBD-2 induction in HOECs. Moreover, anti-FAD-I antibodies blocked F. nucleatum induction of hBD-2 by more than 80%. Recombinant FAD-I (rFAD-I) expressed in Escherichia coli triggered levels of hBD-2 transcription and peptide release in HOECs similar to those of native FAD-I (nFAD-I) isolated from F. nucleatum ATCC 25586. Tandem mass spectrometry revealed a diacylglycerol modification at the cysteine residue in position 16 for both nFAD-I and rFAD-I. Cysteine-to-alanine substitution abrogated FAD-I's ability to induce hBD-2. Finally, FAD-I activation of hBD-2 expression was mediated via both Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6 heterodimerization. Microbial molecules like FAD-I may be utilized in novel therapeutic ways to bolster the host innate immune response at mucosal surfaces.


Assuntos
Proteínas de Bactérias/metabolismo , Fusobacterium nucleatum/imunologia , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , beta-Defensinas/biossíntese , Substituição de Aminoácidos , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Diglicerídeos/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Biossíntese de Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Ativação Transcricional
12.
J Biol Chem ; 289(21): 14896-912, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24727473

RESUMO

The interaction of chemokines with glycosaminoglycans (GAGs) facilitates the formation of localized chemokine gradients that provide directional signals for migrating cells. In this study, we set out to understand the structural basis and impact of the differing oligomerization propensities of the chemokines monocyte chemoattractant protein (MCP)-1/CCL2 and MCP-3/CCL7 on their ability to bind GAGs. These chemokines provide a unique comparison set because CCL2 oligomerizes and oligomerization is required for its full in vivo activity, whereas CCL7 functions as a monomer. To identify the GAG-binding determinants of CCL7, an unbiased hydroxyl radical footprinting approach was employed, followed by a focused mutagenesis study. Compared with the size of the previously defined GAG-binding epitope of CCL2, CCL7 has a larger binding site, consisting of multiple epitopes distributed along its surface. Furthermore, surface plasmon resonance (SPR) studies indicate that CCL7 is able to bind GAGs with an affinity similar to CCL2 but higher than the non-oligomerizing variant, CCL2(P8A), suggesting that, in contrast to CCL2, the large cluster of GAG-binding residues in CCL7 renders oligomerization unnecessary for high affinity binding. However, the affinity of CCL7 is more sensitive than CCL2 to the density of heparan sulfate on the SPR surfaces; this is likely due to the inability of CCL7 to oligomerize because CCL2(P8A) also binds significantly less tightly to low than high density heparan sulfate surfaces compared with CCL2. Together, the data suggest that CCL7 and CCL2 are non-redundant chemokines and that GAG chain density may provide a mechanism for regulating the accumulation of chemokines on cell surfaces.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Epitopos/metabolismo , Glicosaminoglicanos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Linhagem Celular , Quimiocina CCL2/química , Quimiocina CCL2/genética , Quimiocina CCL7/química , Quimiocina CCL7/genética , Eletroforese em Gel de Poliacrilamida , Epitopos/genética , Humanos , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
13.
Biochemistry ; 53(49): 7724-34, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25382225

RESUMO

Structural models of the fibrils formed by the 40-residue amyloid-ß (Aß40) peptide in Alzheimer's disease typically consist of linear polypeptide segments, oriented approximately perpendicular to the long axis of the fibril, and joined together as parallel in-register ß-sheets to form filaments. However, various models differ in the number of filaments that run the length of a fibril, and in the topological arrangement of these filaments. In addition to questions about the structure of Aß40 monomers in fibrils, there are important unanswered questions about their structure in prefibrillar intermediates, which are of interest because they may represent the most neurotoxic form of Aß40. To assess different models of fibril structure and to gain insight into the structure of prefibrillar intermediates, the relative solvent accessibility of amino acid residue side chains in fibrillar and prefibrillar Aß40 preparations was characterized in solution by hydroxyl radical footprinting and structural mass spectrometry. A key to the application of this technology was the development of hydroxyl radical reactivity measures for individual side chains of Aß40. Combined with mass-per-length measurements performed by dark-field electron microscopy, the results of this study are consistent with the core filament structure represented by two- and three-filament solid state nuclear magnetic resonance-based models of the Aß40 fibril (such as 2LMN , 2LMO , 2LMP , and 2LMQ ), with minor refinements, but they are inconsistent with the more recently proposed 2M4J model. The results also demonstrate that individual Aß40 fibrils exhibit structural heterogeneity or polymorphism, where regions of two-filament structure alternate with regions of three-filament structure. The footprinting approach utilized in this study will be valuable for characterizing various fibrillar and nonfibrillar forms of the Aß peptide.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Radical Hidroxila/análise , Modelos Moleculares , Fragmentos de Peptídeos/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , Humanos , Radical Hidroxila/química , Radical Hidroxila/metabolismo , Microscopia Eletrônica de Transmissão , Peso Molecular , Pepsina A/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Conformação Proteica , Proteólise , Radiólise de Impulso , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Propriedades de Superfície , Síncrotrons , Espectrometria de Massas em Tandem
14.
J Am Soc Mass Spectrom ; 35(3): 476-486, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38335063

RESUMO

Hydroxyl radical protein footprinting (HRPF) using synchrotron X-ray radiation (XFP) and mass spectrometry is a well-validated structural biology method that provides critical insights into macromolecular structural dynamics, such as determining binding sites, measuring affinity, and mapping epitopes. Numerous alternative sources for generating the hydroxyl radicals (•OH) needed for HRPF, such as laser photolysis and plasma irradiation, complement synchrotron-based HRPF, and a recently developed commercially available instrument based on flash lamp photolysis, the FOX system, enables access to laboratory benchtop HRPF. Here, we evaluate performing HRPF experiments in-house with a benchtop FOX instrument compared to synchrotron-based X-ray footprinting at the NSLS-II XFP beamline. Using lactate oxidase (LOx) as a model system, we carried out •OH labeling experiments using both instruments, followed by nanoLC-MS/MS bottom-up peptide mass mapping. Experiments were performed under high glucose concentrations to mimic the highly scavenging conditions present in biological buffers and human clinical samples, where less •OH are available for reaction with the biomolecule(s) of interest. The performance of the FOX and XFP HRPF methods was compared, and we found that tuning the •OH dosage enabled optimal labeling coverage for both setups under physiologically relevant highly scavenging conditions. Our study demonstrates the complementarity of FOX and XFP labeling approaches, demonstrating that benchtop instruments such as the FOX photolysis system can increase both the throughput and the accessibility of the HRPF technique.


Assuntos
Radical Hidroxila , Síncrotrons , Humanos , Raios X , Radical Hidroxila/química , Pegadas de Proteínas/métodos , Espectrometria de Massas em Tandem , Oxirredução
15.
Nat Commun ; 15(1): 2467, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503750

RESUMO

In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (Gx6K) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site loop flexible, implying a distinct mechanism of substrate recognition. We further reveal distinct methylation kinetics and substrate preferences of DOT1A (H3K76me0) and DOT1B (DOT1A products H3K76me1/me2) in vitro, determined by a Ser and Ala residue within motif IV, respectively, enabling DOT1A and DOT1B to mediate efficient H3K76 tri-methylation non-processively but cooperatively, and suggesting why kinetoplastids have evolved two DOT1 enzymes.


Assuntos
Histonas , Ubiquitina , Histonas/metabolismo , Lisina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Metilação
16.
J Biol Chem ; 287(20): 16510-20, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22447932

RESUMO

The ubiquitously expressed cellular prion protein (PrP(C)) is subjected to the physiological α-cleavage at a region critical for both PrP toxicity and the conversion of PrP(C) to its pathogenic prion form (PrP(Sc)), generating the C1 and N1 fragments. The C1 fragment can activate caspase 3 while the N1 fragment is neuroprotective. Recent articles indicate that ADAM10, ADAM17, and ADAM9 may not play a prominent role in the α-cleavage of PrP(C) as previously thought, raising questions on the identity of the responsible protease(s). Here we show that, ADAM8 can directly cleave PrP to generate C1 in vitro and PrP C1/full-length ratio is greatly decreased in the skeletal muscles of ADAM8 knock-out mice; in addition, the PrP C1/full-length ratio is linearly correlated with ADAM8 protein level in myoblast cell line C2C12 and in skeletal muscle tissues of transgenic mice. These results indicate that ADAM8 is the primary protease responsible for the α-cleavage of PrP(C) in muscle cells. Moreover, we found that overexpression of PrP(C) led to up-regulation of ADAM8, suggesting that PrP(C) may regulate its own α-cleavage through modulating ADAM8 activity.


Assuntos
Proteínas ADAM/metabolismo , Antígenos CD/metabolismo , Proteínas de Membrana/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas PrPC/metabolismo , Proteólise , Proteínas ADAM/genética , Animais , Antígenos CD/genética , Linhagem Celular , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Proteínas PrPC/genética
17.
Blood ; 118(4): 1015-9, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21068438

RESUMO

CC Chemokine Receptor 5 (CCR5) is an important mediator of chemotaxis and the primary coreceptor for HIV-1. A recent report by other researchers suggested that primary T cells harbor pools of intracellular CCR5. With the use of a series of complementary techniques to measure CCR5 expression (antibody labeling, Western blot, quantitative reverse transcription polymerase chain reaction), we established that intracellular pools of CCR5 do not exist and that the results obtained by the other researchers were false-positives that arose because of the generation of irrelevant binding sites for anti-CCR5 antibodies during fixation and permeabilization of cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Receptores CCR5/metabolismo , Western Blotting , Linfócitos T CD4-Positivos/química , Linfócitos T CD8-Positivos/química , Separação Celular , Citoplasma/química , Citoplasma/metabolismo , Reações Falso-Positivas , Citometria de Fluxo , Humanos , Receptores CCR5/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fixação de Tecidos
18.
Nat Commun ; 14(1): 784, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774348

RESUMO

15-prostaglandin dehydrogenase (15-PGDH) is a negative regulator of tissue stem cells that acts via enzymatic activity of oxidizing and degrading PGE2, and related eicosanoids, that support stem cells during tissue repair. Indeed, inhibiting 15-PGDH markedly accelerates tissue repair in multiple organs. Here we have used cryo-electron microscopy to solve the solution structure of native 15-PGDH and of 15-PGDH individually complexed with two distinct chemical inhibitors. These structures identify key 15-PGDH residues that mediate binding to both classes of inhibitors. Moreover, we identify a dynamic 15-PGDH lid domain that closes around the inhibitors, and that is likely fundamental to the physiologic 15-PGDH enzymatic mechanism. We furthermore identify two key residues, F185 and Y217, that act as hinges to regulate lid closing, and which both inhibitors exploit to capture the lid in the closed conformation, thus explaining their sub-nanomolar binding affinities. These findings provide the basis for further development of 15-PGDH targeted drugs as therapeutics for regenerative medicine.


Assuntos
Eicosanoides , Hidroxiprostaglandina Desidrogenases , Microscopia Crioeletrônica , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores
19.
J Biol Chem ; 286(51): 43710-43716, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22033917

RESUMO

Mutations in the insulin gene can impair proinsulin folding and cause diabetes mellitus. Although crystal structures of insulin dimers and hexamers are well established, proinsulin is refractory to crystallization. Although an NMR structure of an engineered proinsulin monomer has been reported, structures of the wild-type monomer and hexamer remain undetermined. We have utilized hydroxyl radical footprinting and molecular modeling to characterize these structures. Differences between the footprints of insulin and proinsulin, defining a "shadow" of the connecting (C) domain, were employed to refine the model. Our results demonstrate that in its monomeric form, (i) proinsulin contains a native-like insulin moiety and (ii) the C-domain footprint resides within an adjoining segment (residues B23-B29) that is accessible to modification in insulin but not proinsulin. Corresponding oxidation rates were observed within core insulin moieties of insulin and proinsulin hexamers, suggesting that the proinsulin hexamer retains an A/B structure similar to that of insulin. Further similarities in rates of oxidation between the respective C-domains of proinsulin monomers and hexamers suggest that this loop in each case flexibly projects from an outer surface. Although dimerization or hexamer assembly would not be impaired, an ensemble of predicted C-domain positions would block hexamer-hexamer stacking as visualized in classical crystal lattices. We anticipate that protein footprinting in combination with modeling, as illustrated here, will enable comparative studies of diabetes-associated mutant proinsulins and their aberrant modes of aggregation.


Assuntos
Mutação , Proinsulina/química , Proinsulina/genética , Biologia Computacional/métodos , Cristalografia por Raios X/métodos , Diabetes Mellitus/metabolismo , Dimerização , Radicais Livres , Humanos , Insulina/química , Espectrometria de Massas/métodos , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Estrutura Terciária de Proteína , Software , Solventes/química , Síncrotrons
20.
Sci Rep ; 11(1): 15498, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326365

RESUMO

Endothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air-liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbß expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, ß, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbß gene expression were associated with lower FEV1 in asthma. Both Hbß knockdown and overexpression affected cell morphology. Hbß and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbß gene expression were associated with airflow obstruction. Hbß and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.


Assuntos
Células Epiteliais/metabolismo , Hemoglobinas/metabolismo , Óxidos de Nitrogênio/metabolismo , Ar , Bioquímica , Biotecnologia , Brônquios/metabolismo , Simulação por Computador , Gerenciamento de Dados , Epitélio/metabolismo , Heme/química , Hemoglobinas/análise , Humanos , Imuno-Histoquímica , Imunoprecipitação , Pulmão/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxigênio/química , Proteômica/métodos , RNA Mensageiro/metabolismo , RNA-Seq , Testes de Função Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA