Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 401(10371): 118-130, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36442488

RESUMO

BACKGROUND: Malaria in the first trimester of pregnancy is associated with adverse pregnancy outcomes. Artemisinin-based combination therapies (ACTs) are a highly effective, first-line treatment for uncomplicated Plasmodium falciparum malaria, except in the first trimester of pregnancy, when quinine with clindamycin is recommended due to concerns about the potential embryotoxicity of artemisinins. We compared adverse pregnancy outcomes after artemisinin-based treatment (ABT) versus non-ABTs in the first trimester of pregnancy. METHODS: For this systematic review and individual patient data (IPD) meta-analysis, we searched MEDLINE, Embase, and the Malaria in Pregnancy Library for prospective cohort studies published between Nov 1, 2015, and Dec 21, 2021, containing data on outcomes of pregnancies exposed to ABT and non-ABT in the first trimester. The results of this search were added to those of a previous systematic review that included publications published up until November, 2015. We included pregnancies enrolled before the pregnancy outcome was known. We excluded pregnancies with missing estimated gestational age or exposure information, multiple gestation pregnancies, and if the fetus was confirmed to be unviable before antimalarial treatment. The primary endpoint was adverse pregnancy outcome, defined as a composite of either miscarriage, stillbirth, or major congenital anomalies. A one-stage IPD meta-analysis was done by use of shared-frailty Cox models. This study is registered with PROSPERO, number CRD42015032371. FINDINGS: We identified seven eligible studies that included 12 cohorts. All 12 cohorts contributed IPD, including 34 178 pregnancies, 737 with confirmed first-trimester exposure to ABTs and 1076 with confirmed first-trimester exposure to non-ABTs. Adverse pregnancy outcomes occurred in 42 (5·7%) of 736 ABT-exposed pregnancies compared with 96 (8·9%) of 1074 non-ABT-exposed pregnancies in the first trimester (adjusted hazard ratio [aHR] 0·71, 95% CI 0·49-1·03). Similar results were seen for the individual components of miscarriage (aHR=0·74, 0·47-1·17), stillbirth (aHR=0·71, 0·32-1·57), and major congenital anomalies (aHR=0·60, 0·13-2·87). The risk of adverse pregnancy outcomes was lower with artemether-lumefantrine than with oral quinine in the first trimester of pregnancy (25 [4·8%] of 524 vs 84 [9·2%] of 915; aHR 0·58, 0·36-0·92). INTERPRETATION: We found no evidence of embryotoxicity or teratogenicity based on the risk of miscarriage, stillbirth, or major congenital anomalies associated with ABT during the first trimester of pregnancy. Given that treatment with artemether-lumefantrine was associated with fewer adverse pregnancy outcomes than quinine, and because of the known superior tolerability and antimalarial effectiveness of ACTs, artemether-lumefantrine should be considered the preferred treatment for uncomplicated P falciparum malaria in the first trimester. If artemether-lumefantrine is unavailable, other ACTs (except artesunate-sulfadoxine-pyrimethamine) should be preferred to quinine. Continued active pharmacovigilance is warranted. FUNDING: Medicines for Malaria Venture, WHO, and the Worldwide Antimalarial Resistance Network funded by the Bill & Melinda Gates Foundation.


Assuntos
Aborto Espontâneo , Antimaláricos , Malária Falciparum , Malária , Feminino , Gravidez , Humanos , Antimaláricos/efeitos adversos , Resultado da Gravidez , Quinina/efeitos adversos , Primeiro Trimestre da Gravidez , Natimorto/epidemiologia , Estudos Prospectivos , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Combinação de Medicamentos , Etanolaminas/uso terapêutico
2.
Malar J ; 23(1): 29, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243220

RESUMO

BACKGROUND: In 2015, Tanzania National Malaria Control Programme (NMCP) established a longitudinal malaria vector entomological surveillance (MVES). The MVES is aimed at a periodical assessment of malaria vector composition and abundance, feeding and resting behaviours, and Plasmodium falciparum infection in different malaria epidemiological strata to guide the NMCP on the deployment of appropriate malaria vector interventions. This work details the dynamics of malaria vector composition and transmission in different malaria epidemiological strata. METHODS: The MVES was conducted from 32 sentinel district councils across the country. Mosquitoes were collected by the trained community members and supervised by the NMCP and research institutions. Three consecutive night catches (indoor collection with CDC light trap and indoor/outdoor collection using bucket traps) were conducted monthly in three different households selected randomly from two to three wards within each district council. Collected mosquitoes were sorted and morphologically identified in the field. Thereafter, the samples were sent to the laboratory for molecular characterization using qPCR for species identification and detection of P. falciparum infections (sporozoites). ELISA technique was deployed for blood meal analysis from samples of blood-fed mosquitoes to determine the blood meal indices (BMI). RESULTS: A total of 63,226 mosquitoes were collected in 32 district councils from January 2017 to December 2021. Out of which, 39,279 (62%), 20,983 (33%) and 2964 (5%) were morphologically identified as Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l., and as other Anopheles species, respectively. Out of 28,795 laboratory amplified mosquitoes, 13,645 (47%) were confirmed to be Anopheles arabiensis, 9904 (34%) as An. funestus sensu stricto (s.s.), and 5193 (19%) as An. gambiae s.s. The combined average entomological inoculation rates (EIR) were 0.46 (95% CI 0.028-0.928) for An. gambiae s.s., 0.836 (95% CI 0.138-1.559) for An. arabiensis, and 0.58 (95% CI 0.165-0.971) for An. funestus s.s. with variations across different malaria transmission strata. Anopheles funestus s.s. and An. arabiensis were predominant in the Lake and South-Eastern zones, respectively, mostly in high malaria transmission areas. Monthly mosquito densities displayed seasonal patterns, with two peaks following the rainy seasons, varying slightly across species and district councils. CONCLUSION: Anopheles arabiensis remains the predominant vector species followed by An. funestus s.s. in the country. Therefore, strengthening integrated vector management including larval source management is recommended to address outdoor transmission by An. arabiensis to interrupt transmission particularly where EIR is greater than the required elimination threshold of less than one (< 1) to substantially reduce the prevalence of malaria infection.


Assuntos
Anopheles , Clorfentermina/análogos & derivados , Malária Falciparum , Malária , Animais , Humanos , Malária/prevenção & controle , Plasmodium falciparum , Tanzânia/epidemiologia , Mosquitos Vetores , Comportamento Alimentar , Malária Falciparum/prevenção & controle
3.
Malar J ; 22(1): 100, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932400

RESUMO

BACKGROUND: Insecticide resistance is a serious threat to the continued effectiveness of insecticide-based malaria vector control measures, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). This paper describes trends and dynamics of insecticide resistance and its underlying mechanisms from annual resistance monitoring surveys on Anopheles gambiae sensu lato (s.l.) populations conducted across mainland Tanzania from 2004 to 2020. METHODS: The World Health Organization (WHO) standard protocols were used to assess susceptibility of the wild female An. gambiae s.l. mosquitoes to insecticides, with mosquitoes exposed to diagnostic concentrations of permethrin, deltamethrin, lambdacyhalothrin, bendiocarb, and pirimiphos-methyl. WHO test papers at 5× and 10× the diagnostic concentrations were used to assess the intensity of resistance to pyrethroids; synergist tests using piperonyl butoxide (PBO) were carried out in sites where mosquitoes were found to be resistant to pyrethroids. To estimate insecticide resistance trends from 2004 to 2020, percentage mortalities from each site and time point were aggregated and regression analysis of mortality versus the Julian dates of bioassays was performed. RESULTS: Percentage of sites with pyrethroid resistance increased from 0% in 2004 to more than 80% in the 2020, suggesting resistance has been spreading geographically. Results indicate a strong negative association (p = 0.0001) between pyrethroids susceptibility status and survey year. The regression model shows that by 2020 over 40% of An. gambiae mosquitoes survived exposure to pyrethroids at their respective diagnostic doses. A decreasing trend of An. gambiae susceptibility to bendiocarb was observed over time, but this was not statistically significant (p = 0.8413). Anopheles gambiae exhibited high level of susceptibility to the pirimiphos-methyl in sampled sites. CONCLUSIONS: Anopheles gambiae Tanzania's major malaria vector, is now resistant to pyrethroids across the country with resistance increasing in prevalence and intensity and has been spreading geographically. This calls for urgent action for efficient malaria vector control tools to sustain the gains obtained in malaria control. Strengthening insecticide resistance monitoring is important for its management through evidence generation for effective malaria vector control decision.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Feminino , Humanos , Resistência a Inseticidas , Tanzânia , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controle , Piretrinas/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos/métodos
4.
Malar J ; 20(1): 345, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412651

RESUMO

BACKGROUND: ICON® Maxx (Syngenta) is an insecticide treatment kit of pyrethroid and binding agent for long-lasting treatment of mosquito nets. Interim recommendation for use on nets was granted by the World Health Organization (WHO) after successful evaluation in experimental huts following multiple washes. A full WHO recommendation is contingent upon demonstration of continued bio-efficacy after 3 years of use. METHODS: A household-randomized prospective study design was used to assess ICON Maxx-treated nets over 3 years in north-eastern Tanzania. Conventional treated nets (with lambda-cyhalothrin, but without binder) served as a positive control. At 6-monthly intervals, cross-sectional household surveys monitored net use and physical integrity, while cone and tunnel tests assessed insecticidal efficacy. Pyrethroid content was determined after 12 and 36 months. A parallel cohort of nets was monitored annually for evidence of net deterioration and attrition. RESULTS: After 12 months' use, 97% of ICON Maxx-treated nets but only 67% of CTN passed the WHO efficacy threshold for insecticidal durability (> 80% mortality in cone or tunnel or 90% feeding inhibition in tunnel). After 24- and 36-months use, 67% and 26% of ICON Maxx treated nets met the cone criteria, respectively, and over 90% met the combined cone and tunnel criteria. Lambda-cyhalothrin content after 36 months was 17% (15.8 ± 4.3 mg/m2) of initial content. ICON Maxx nets were used year-round and washed approximately 4 times per year. In cross-sectional survey after 36 months the average number of holes was 20 and hole index was 740 cm2 per net. Cohort nets had fewer holes and smaller hole index than cross-sectional nets. However, only 15% (40/264) of cohort nets were not lost to follow-up or not worn out after 36 months. CONCLUSIONS: Because more than 80% of nets met the WHO efficacy criteria after 36 months use, ICON Maxx was granted WHO full recommendation. Cross-sectional and cohort surveys were complementary and gave a fuller understanding of net durability. To improve net usage and retention, stronger incentives and health messaging should be introduced in WHO LLIN longitudinal trials. Untreated polyester nets may be made long-lastingly insecticidal in Africa through simple household treatment using ICON Maxx pyrethroid-binder kits.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos , Nitrilas , Piretrinas , Animais , Estudos Transversais , Controle de Mosquitos/instrumentação , Poliésteres , Estudos Prospectivos , Tanzânia
5.
Malar J ; 20(1): 180, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836778

RESUMO

BACKGROUND: The effectiveness of long-lasting insecticidal nets (LLIN), the primary method for preventing malaria in Africa, is compromised by evolution and spread of pyrethroid resistance. Further gains require new insecticides with novel modes of action. Chlorfenapyr is a pyrrole insecticide that disrupts mitochrondrial function and confers no cross-resistance to neurotoxic insecticides. Interceptor® G2 LN (IG2) is an insecticide-mixture LLIN, which combines wash-resistant formulations of chlorfenapyr and the pyrethroid alpha-cypermethrin. The objective was to determine IG2 efficacy under controlled household-like conditions for personal protection and control of wild, pyrethroid-resistant Anopheles funestus mosquitoes. METHODS: Experimental hut trials tested IG2 efficacy against two positive controls-a chlorfenapyr-treated net and a standard alpha-cypermethrin LLIN, Interceptor LN (IG1)-consistent with World Health Organization (WHO) evaluation guidelines. Mosquito mortality, blood-feeding inhibition, personal protection, repellency and insecticide-induced exiting were recorded after zero and 20 washing cycles. The trial was repeated and analysed using multivariate and meta-analysis. RESULTS: In the two trials held in NE Tanzania, An. funestus mortality was 2.27 (risk ratio 95% CI 1.13-4.56) times greater with unwashed Interceptor G2 than with unwashed Interceptor LN (p = 0.012). There was no significant loss in mortality with IG2 between 0 and 20 washes (1.04, 95% CI 0.83-1.30, p = 0.73). Comparison with chlorfenapyr treated net indicated that most mortality was induced by the chlorfenapyr component of IG2 (0.96, CI 0.74-1.23), while comparison with Interceptor LN indicated blood-feeding was inhibited by the pyrethroid component of IG2 (IG2: 0.70, CI 0.44-1.11 vs IG1: 0.61, CI 0.39-0.97). Both insecticide components contributed to exiting from the huts but the contributions were heterogeneous between trials (heterogeneity Q = 36, P = 0.02). WHO susceptibility tests with pyrethroid papers recorded 44% survival in An. funestus. CONCLUSIONS: The high mortality recorded by IG2 against pyrethroid-resistant An. funestus provides first field evidence of high efficacy against this primary, anthropophilic, malaria vector.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores , Piretrinas/farmacologia , Animais , Humanos , Tanzânia
6.
Malar J ; 20(1): 171, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781261

RESUMO

BACKGROUND: As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability. METHODS: A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed. RESULTS: Some 57.0% (95% CI 53.9-60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4-86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children < 5 years (45.8%) and adults (42.1%) were prioritized, with fewer school-age children 5-14 years (35.9%), youths 15-24 years (28.1%) and seniors > 65 years (32.6%) sleeping under ITNs. Crowding ([Formula: see text] 3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: [Formula: see text] 3 people slept under them (OR 0.50 (95% CI 0.40-0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56-0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7-30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets. CONCLUSION: Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Propriedade/estatística & dados numéricos , Estudos Transversais , Características da Família , Mosquiteiros Tratados com Inseticida/provisão & distribuição , Controle de Mosquitos/instrumentação , Tanzânia
7.
BMC Public Health ; 21(1): 1666, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521374

RESUMO

BACKGROUND: Despite widespread use of long-lasting insecticidal nets (LLINs) and other tools, malaria caused 409,000 deaths worldwide in 2019. While indoor residual spraying (IRS) is an effective supplement, IRS is moderately expensive and logistically challenging. In endemic areas, IRS requires yearly application just before the main rainy season and potential interim reapplications. A new technology, insecticide-treated wall liner (ITWL), might overcome these challenges. METHODS: We conducted a 44-cluster two-arm randomized controlled trial in Muheza, Tanzania from 2015 to 2016 to evaluate the cost and efficacy of a non-pyrethroid ITWL to supplement LLINs, analyzing operational changes over three installation phases. The estimated efficacy (with 95% confidence intervals) of IRS as a supplement to LLINs came mainly from a published randomized trial in Muleba, Tanzania. We obtained financial costs of IRS from published reports and conducted a household survey of a similar IRS program near Muleba to determine household costs. The costs of ITWL were amortized over its 4-year expected lifetime and converted to 2019 US dollars using Tanzania's GDP deflator and market exchange rates. RESULTS: Operational improvements from phases 1 to 3 raised ITWL coverage from 35.1 to 67.1% of initially targeted households while reducing economic cost from $34.18 to $30.56 per person covered. However, 90 days after installing ITWL in 5666 households, the randomized trial was terminated prematurely because cone bioassay tests showed that ITWL no longer killed mosquitoes and therefore could not prevent malaria. The ITWL cost $10.11 per person per year compared to $5.69 for IRS. With an efficacy of 57% (3-81%), IRS averted 1162 (61-1651) disability-adjusted life years (DALYs) per 100,000 population yearly. Its incremental cost-effectiveness ratio (ICER) per DALY averted was $490 (45% of Tanzania's per capita gross national income). CONCLUSIONS: These findings provide design specifications for future ITWL development and implementation. It would need to be efficacious and more effective and/or less costly than IRS, so more persons could be protected with a given budget. The durability of a previous ITWL, progress in non-pyrethroid tools, economies of scale and competition (as occurred with LLINs), strengthened community engagement, and more efficient installation and management procedures all offer promise of achieving these goals. Therefore, ITWLs merit ongoing study. FIRST POSTED: 2015 ( NCT02533336 ).


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Análise Custo-Benefício , Humanos , Malária/prevenção & controle , Controle de Mosquitos , Tanzânia
8.
PLoS Med ; 17(9): e1003248, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946451

RESUMO

BACKGROUND: Two billion long-lasting insecticidal nets (LLINs) have been procured for malaria control. A functional LLIN is one that is present, is in good physical condition, and remains insecticidal, thereby providing protection against vector-borne diseases through preventing bites and killing disease vectors. The World Health Organization (WHO) prequalifies LLINs that remain adequately insecticidal 3 years after deployment. Therefore, institutional buyers often assume that prequalified LLINs are functionally identical with a 3-year lifespan. We measured the lifespans of 3 LLIN products, and calculated their cost per year of functional life, to demonstrate the economic and public health importance of procuring the most cost-effective LLIN product based on its lifespan. METHODS AND FINDINGS: A randomised double-blinded trial of 3 pyrethroid LLIN products (10,571 nets in total) was conducted at 3 follow-up points: 10 months (August-October 2014), 22 months (August-October 2015), and 36 months (October-December 2016) among 3,393 households in Tanzania using WHO-recommended methods. Primary outcome was LLIN functional survival (LLIN present and in serviceable condition). Secondary outcomes were (1) bioefficacy and chemical content (residual insecticidal activity) and (2) protective efficacy for volunteers sleeping under the LLINs (bite reduction and mosquitoes killed). Median LLIN functional survival was significantly different between the 3 net products (p = 0.001): 2.0 years (95% CI 1.7-2.3) for Olyset, 2.5 years (95% CI 2.2-2.8) for PermaNet 2.0 (hazard ratio [HR] 0.73 [95% CI 0.64-0.85], p = 0.001), and 2.6 years (95% CI 2.3-2.8) for NetProtect (HR = 0.70 [95% CI 0.62-0.77], p < 0.001). Functional survival was affected by accumulation of holes, leading to users discarding nets. Protective efficacy also significantly differed between products as they aged. Equivalent annual cost varied between US$1.2 (95% CI $1.1-$1.4) and US$1.5 (95% CI $1.3-$1.7), assuming that each net was priced identically at US$3. The 2 longer-lived nets (PermaNet and NetProtect) were 20% cheaper than the shorter-lived product (Olyset). The trial was limited to only the most widely sold LLINs in Tanzania. Functional survival varies by country, so the single country setting is a limitation. CONCLUSIONS: These results suggest that LLIN functional survival is less than 3 years and differs substantially between products, and these differences strongly influence LLIN value for money. LLIN tendering processes should consider local expectations of cost per year of functional life and not unit price. As new LLIN products come on the market, especially those with new insecticides, it will be imperative to monitor their comparative durability to ensure that the most cost-effective products are procured for malaria control.


Assuntos
Mosquiteiros Tratados com Inseticida/economia , Inseticidas/economia , Controle de Mosquitos/métodos , Animais , Culicidae/efeitos dos fármacos , Vetores de Doenças , Características da Família , Seguimentos , Humanos , Resistência a Inseticidas/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida/tendências , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/economia , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Tanzânia/epidemiologia
9.
Malar J ; 19(1): 297, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819368

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the most widely deployed vector control intervention in sub-Saharan Africa to prevent malaria. Recent reports indicate selection of pyrethroid insecticide resistance is widespread in mosquito vectors. This paper explores risk factors associated with malaria infection prevalence and vector density between mass distribution campaigns, changes in net coverage, and loss of protection in an area of high pyrethroid resistance in Northwest Tanzania. METHODS: A cross sectional malaria survey of 3456 children was undertaken in 2014 in Muleba district, Kagera region west of Lake Victoria. Vector density was assessed using indoor light traps and outdoor tent traps. Anophelines were identified to species using PCR and tested for Plasmodium falciparum circumsporozoite protein. Logistic regression was used to identify household and environmental factors associated with malaria infection and regression binomial negative for vector density. RESULTS: LLIN use was 27.7%. Only 16.9% of households had sufficient nets to cover all sleeping places. Malaria infection was independently associated with access to LLINs (OR: 0.57; 95% CI 0.34-0.98). LLINs less than 2 years old were slightly more protective than older LLINs (53 vs 65% prevalence of infection); however, there was no evidence that LLINs in good condition (hole index < 65) were more protective than LLINs, which were more holed. Other risk factors for malaria infection were age, group, altitude and house construction quality. Independent risk factors for vector density were consistent with malaria outcomes and included altitude, wind, livestock, house quality, open eaves and LLIN usage. Indoor collections comprised 4.6% Anopheles funestus and 95.4% Anopheles gambiae of which 4.5% were Anopheles arabiensis and 93.5% were Anopheles gambiae sensu stricto. CONCLUSION: Three years after the mass distribution campaign and despite top-ups, LLIN usage had declined considerably. While children living in households with access to LLINs were at lower risk of malaria, infection prevalence remained high even among users of LLINs in good condition. While effort should be made to maintain high coverage between campaigns, distribution of standard pyrethroid-only LLINs appears insufficient to prevent malaria transmission in this area of intense pyrethroid resistance.


Assuntos
Anopheles/fisiologia , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária Falciparum/epidemiologia , Controle de Mosquitos , Mosquitos Vetores/fisiologia , Adolescente , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Malária Falciparum/parasitologia , Masculino , Plasmodium falciparum/efeitos dos fármacos , Densidade Demográfica , Prevalência , Fatores de Risco , Tanzânia/epidemiologia
10.
Lancet ; 391(10130): 1577-1588, 2018 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-29655496

RESUMO

BACKGROUND: Progress in malaria control is under threat by wide-scale insecticide resistance in malaria vectors. Two recent vector control products have been developed: a long-lasting insecticidal net that incorporates a synergist piperonyl butoxide (PBO) and a long-lasting indoor residual spraying formulation of the insecticide pirimiphos-methyl. We evaluated the effectiveness of PBO long-lasting insecticidal nets versus standard long-lasting insecticidal nets as single interventions and in combination with the indoor residual spraying of pirimiphos-methyl. METHODS: We did a four-group cluster randomised controlled trial using a two-by-two factorial design of 48 clusters derived from 40 villages in Muleba (Kagera, Tanzania). We randomly assigned these clusters using restricted randomisation to four groups: standard long-lasting insecticidal nets, PBO long-lasting insecticidal nets, standard long-lasting insecticidal nets plus indoor residual spraying, or PBO long-lasting insecticidal nets plus indoor residual spraying. Both standard and PBO nets were distributed in 2015. Indoor residual spraying was applied only once in 2015. We masked the inhabitants of each cluster to the type of nets received, as well as field staff who took blood samples. Neither the investigators nor the participants were masked to indoor residual spraying. The primary outcome was the prevalence of malaria infection in children aged 6 months to 14 years assessed by cross-sectional surveys at 4, 9, 16, and 21 months after intervention. The endpoint for assessment of indoor residual spraying was 9 months and PBO long-lasting insecticidal nets was 21 months. This trial is registered with ClinicalTrials.gov, number NCT02288637. FINDINGS: 7184 (68·0%) of 10 560 households were selected for post-intervention survey, and 15 469 (89·0%) of 17 377 eligible children from the four surveys were included in the intention-to-treat analysis. Of the 878 households visited in the two indoor residual spraying groups, 827 (94%) had been sprayed. Reported use of long-lasting insecticidal nets, across all groups, was 15 341 (77·3%) of 19 852 residents after 1 year, decreasing to 12 503 (59·2%) of 21 105 in the second year. Malaria infection prevalence after 9 months was lower in the two groups that received PBO long-lasting insecticidal nets than in the two groups that received standard long-lasting insecticidal nets (531 [29%] of 1852 children vs 767 [42%] of 1809; odds ratio [OR] 0·37, 95% CI 0·21-0·65; p=0·0011). At the same timepoint, malaria prevalence in the two groups that received indoor residual spraying was lower than in groups that did not receive indoor residual spraying (508 [28%] of 1846 children vs 790 [44%] of 1815; OR 0·33, 95% CI 0·19-0·55; p<0·0001) and there was evidence of an interaction between PBO long-lasting insecticidal nets and indoor residual spraying (OR 2·43, 95% CI 1·19-4·97; p=0·0158), indicating redundancy when combined. The PBO long-lasting insecticidal net effect was sustained after 21 months with a lower malaria prevalence than the standard long-lasting insecticidal net (865 [45%] of 1930 children vs 1255 [62%] of 2034; OR 0·40, 0·20-0·81; p=0·0122). INTERPRETATION: The PBO long-lasting insecticidal net and non-pyrethroid indoor residual spraying interventions showed improved control of malaria transmission compared with standard long-lasting insecticidal nets where pyrethroid resistance is prevalent and either intervention could be deployed to good effect. As a result, WHO has since recommended to increase coverage of PBO long-lasting insecticidal nets. Combining indoor residual spraying with pirimiphos-methyl and PBO long-lasting insecticidal nets provided no additional benefit compared with PBO long-lasting insecticidal nets alone or standard long-lasting insecticidal nets plus indoor residual spraying. FUNDING: UK Department for International Development, Medical Research Council, and Wellcome Trust.


Assuntos
Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas/uso terapêutico , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Compostos Organotiofosforados/uso terapêutico , Sinergistas de Praguicidas/uso terapêutico , Butóxido de Piperonila/uso terapêutico , Adolescente , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Malária/epidemiologia , Malária/transmissão , Masculino , Mosquitos Vetores/parasitologia , Piretrinas , Tanzânia/epidemiologia
11.
Malar J ; 18(1): 335, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570107

RESUMO

BACKGROUND: The decline in malaria cases and vectors is major milestone in fighting against malaria. The efficacy of MAGNet long-lasting insecticidal nets (MAGNet LLIN), an alpha-cypermethrin incorporated long-lasting net, with the target dose ± 25% of 5.8 g active ingredient (AI)/kg (4.35-7.25 g AI/kg) was evaluated in six veranda-trap experimental huts in Muheza, Tanzania against freely flying wild population of Anopheles funestus. METHODS: MAGNet LLINs were tested against wild, free-flying, host-seeking An. funestus mosquitoes over a period of 6 weeks (total of 36 nights in the huts). MAGNet LLIN efficacy was determined in terms of mosquito mortality, blood-feeding inhibition, deterrence, induced exiting, personal protection, and insecticidal killing over 20 washes according to WHO standardized procedures. Efficacy was compared with reference to a WHOPES recommended approved LLINs (DuraNet) and to a net conventionally treated (CTN) treated with alpha-cypermethrin at WHO-recommended dose and washed to just before cut-off point. The efficacy of MAGNet was evaluated in experimental huts against wild, free-flying, pyrethroid-resistant An. funestus. The WHO-susceptibility method was used to detect resistance in wild Anopheles exposed to 0.75% permethrin. Mosquito mortality, blood-feeding inhibition and personal protection were compared between untreated nets and standard LLINs. Blood-feeding rates were recorded and compared between the 20 times washed; blood-feeding rates between 20 times washed MAGNet LLIN and 20 times washed WHOPES-approved piperonyl butoxide (PBO)/pyrethroid were not statistically different (p > 0.05). RESULTS: The results have evidently shown that MAGNet LLIN provides similar blood-feeding inhibition, exophily, mortality, and deterrence to the standard approved LLIN, thus meeting the WHOPES criteria for blood feeding. The significantly high feeding inhibition and personal protection over pyrethroid-resistant An. funestus recorded by both unwashed and 20 times washed MAGNet compared to the unwashed DuraNet, the WHOPES-approved standard pyrethroid-only LLIN provides proof of MAGNet meeting Phase II WHOPES criteria for a LLIN. CONCLUSION: Based on this study, MAGNet has been shown to have a promising impact on protection when 20 times washed against a highly resistant population of An. funestus.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Lavanderia , Piretrinas , Animais , Habitação , Resistência a Inseticidas , Controle de Mosquitos/instrumentação , Tanzânia
12.
Malar J ; 18(1): 153, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039788

RESUMO

BACKGROUND: Insecticide-treated net (ITN) durability, measured through physical integrity and bioefficacy, must be accurately assessed in order to plan the timely replacement of worn out nets and guide procurement of longer-lasting, cost-effective nets. World Health Organization (WHO) guidance advises that new intervention class ITNs be assessed 3 years after distribution, in experimental huts. In order to obtain information on whole-net efficacy cost-effectively and with adequate replication, a new bioassay, the Ifakara Ambient Chamber Test (I-ACT), a semi-field whole net assay baited with human host, was compared to established WHO durability testing methods. METHODS: Two experiments were conducted using pyrethroid-susceptible female adult Anopheles gambiae sensu stricto comparing bioefficacy of Olyset®, PermaNet® 2.0 and NetProtect® evaluated by I-ACT and WHO cone and tunnel tests. In total, 432 nets (144/brand) were evaluated using I-ACT and cone test. Olyset® nets (132/144) that did not meet the WHO cone test threshold criteria (≥ 80% mortality or ≥ 95% knockdown) were evaluated using tunnel tests with threshold criteria of ≥ 80% mortality or ≥ 90% feeding inhibition for WHO tunnel and I-ACT. Pass rate of nets tested by WHO combined standard WHO bioassays (cone/tunnel tests) was compared to pass in I-ACT only by net brand and time after distribution. RESULTS: Overall, more nets passed WHO threshold criteria when tested with I-ACT than with standard WHO bioassays 92% vs 69%, (OR: 4.1, 95% CI 3.5-4.7, p < 0.0001). The proportion of Olyset® nets that passed differed if WHO 2005 or WHO 2013 LN testing guidelines were followed: 77% vs 71%, respectively. Based on I-ACT results, PermaNet® 2.0 and NetProtect® demonstrated superior mortality and non-inferior feeding inhibition to Olyset® over 3 years of field use in Tanzania. CONCLUSION: Ifakara Ambient Chamber Test may have use for durability studies and non-inferiority testing of new ITN products. It measures composite bioefficacy and physical integrity with both mortality and feeding inhibition endpoints, using fewer mosquitoes than standard WHO bioassays (cone and tunnel tests). The I-ACT is a high-throughput assay to evaluate ITN products that work through either contact toxicity or feeding inhibition. I-ACT allows mosquitoes to interact with a host sleeping underneath a net as encountered in the field, without risk to human participants.


Assuntos
Bioensaio/métodos , Mosquiteiros Tratados com Inseticida/normas , Animais , Anopheles , Bioensaio/normas , Feminino , Humanos , Mosquiteiros Tratados com Inseticida/economia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Tanzânia , Organização Mundial da Saúde
13.
Malar J ; 16(1): 439, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084560

RESUMO

BACKGROUND: Malaria vector control in Tanzania is based on use of long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS), which both rely on the use of chemical insecticides. The effectiveness of these control tools is endangered by the development of insecticide resistance in the major malaria vectors. This study was carried out to monitor the susceptibility status of major malaria vectors to insecticides used for IRS and LLINs in mainland Tanzania. METHODS: Mosquito larvae were collected in 20 sites of Tanzania mainland in 2015. Phenotypic resistance was determined using standard WHO susceptibility tests. Molecular assay were used to determine distribution of Anopheles gambiae sub-species. A microplate assay approach was used for identifying enzyme levels on single mosquitoes from each sites compared with a susceptible reference strain, An. gambiae sensu stricto (s.s.) Kisumu strain. RESULTS: Anopheles arabiensis was the dominant malaria specie in the country, accounting for 52% of the sibling species identified, while An. gambiae s.s. represented 48%. In Arumeru site, the dominant species was An. arabiensis, which was resistant to both pyrethroids (permethrin and deltamethrin), and pirimiphos-methyl, and had significant elevated levels of GSTs, non-specific esterases, and oxidase enzymes. An. arabiensis was also a dominant species in Kilombero and Kondoa sites, both were resistant to permethrin and deltamethrin with significant activity levels of oxidase enzymes. Resistance to bendiocarb was recorded in Ngara site where specie composition is evenly distributed between An. gambiae s.s. and An.arabiensis. Also bendiocarb resistance was recorded in Mbozi site, where An. gambiae s.s. is the dominant species. CONCLUSIONS: Overall, this study confirmed resistance to all four insecticide classes in An. gambiae sensu lato in selected locations in Tanzania. Results are discussed in relation to resistance mechanisms and the optimization of resistance management strategies.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Múltiplos Medicamentos , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Animais , Feminino , Tanzânia
14.
Malar J ; 16(1): 82, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212636

RESUMO

BACKGROUND: A novel, insecticide-treated, durable wall lining (ITWL), which mimics indoor residual spraying (IRS), has been developed to provide prolonged vector control when fixed to the inner walls of houses. PermaNet® ITWL is a polypropylene material containing non-pyrethroids (abamectin and fenpyroximate) which migrate gradually to the surface. METHODS: An experimental hut trial was conducted in an area of pyrethroid-resistant Anopheles gambiae s.l. and Anopheles funestus s.s. to compare the efficacy of non-pyrethroid ITWL, long-lasting insecticidal nets (LLIN) (Interceptor®), pyrethroid ITWL (ZeroVector®), and non-pyrethroid ITWL + LLIN. RESULTS: The non-pyrethroid ITWL produced relatively low levels of mortality, between 40-50% for An. funestus and An. gambiae, across all treatments. Against An. funestus, the non-pyrethroid ITWL when used without LLIN produced 47% mortality but this level of mortality was not significantly different to that of the LLIN alone (29%, P = 0.306) or ITWL + LLIN (35%, P = 0.385). Mortality levels for An. gambiae were similar to An. funestus with non-pyrethroid ITWL, producing 43% mortality compared with 26% for the LLIN. Exiting rates from ITWL huts were similar to the control and highest when the LLIN was present. An attempt to restrict mosquito access by covering the eave gap with ITWL (one eave open vs four open) had no effect on numbers entering. The LLIN provided personal protection when added to the ITWL with only 30% blood-fed compared with 69 and 56% (P = 0.001) for ITWL alone. Cone bioassays on ITWL with 30 min exposure after the trial produced mortality of >90% using field An. gambiae. CONCLUSIONS: Despite high mortality in bioassays, the hut trial produced only limited mortality which was attributed to pyrethroid resistance against the pyrethroid ITWL and low efficacy in the non-pyrethroid ITWL. Hut ceilings were left uncovered and may have served as a potential untreated refuge. By analogy to IRS campaigns, which also do not routinely treat ceilings, high community coverage with ITWL may still reduce malaria transmission. Restriction of eave gaps by 75% proved an inadequate barrier to mosquito entry. The findings represent the first 2 months after installation and do not necessarily predict long-term efficacy.


Assuntos
Anopheles , Benzoatos , Resistência a Inseticidas , Inseticidas , Ivermectina/análogos & derivados , Controle de Mosquitos , Pirazóis , Piretrinas , Animais , Humanos , Malária/prevenção & controle , Polipropilenos , Tanzânia
15.
Malar J ; 15(1): 289, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27216484

RESUMO

BACKGROUND: The success of malaria vector control is threatened by widespread pyrethroid insecticide resistance. However, the extent to which insecticide resistance impacts transmission is unclear. The objective of this study was to examine the association between the DDT/pyrethroid knockdown resistance mutation Vgsc-1014S, commonly termed kdr, and infection with Plasmodium falciparum sporozoites in Anopheles gambiae. METHODS: WHO standard methods were used to characterize susceptibility of wild female mosquitoes to 0.05 % deltamethrin. PCR-based molecular diagnostics were used to identify mosquitoes to species and to genotype at the Vgsc-L1014S locus. ELISAs were used to detect the presence of P. falciparum sporozoites and for blood meal identification. RESULTS: Anopheles mosquitoes were resistant to deltamethrin with mortality rates of 77.7 % [95 % CI 74.9-80.3 %]. Of 545 mosquitoes genotyped 96.5 % were A. gambiae s.s. and 3.5 % were Anopheles arabiensis. The Vgsc-1014S mutation was detected in both species. Both species were predominantly anthropophagic. In A. gambiae s.s., Vgsc-L1014S genotype was significantly associated with deltamethrin resistance (χ2 = 11.2; p < 0.001). The P. falciparum sporozoite infection rate was 4.2 %. There was a significant association between the presence of sporozoites and Vgsc-L1014S genotype in A. gambiae s.s. (χ2 = 4.94; p = 0.026). CONCLUSIONS: One marker, Vgsc-1014S, was associated with insecticide resistance and P. falciparum infection in wild-caught mixed aged populations of A. gambiae s.s. thereby showing how resistance may directly impact transmission.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Plasmodium falciparum/isolamento & purificação , Piretrinas/farmacologia , Animais , Anopheles/parasitologia , Bioensaio , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Incidência , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Proteínas Mutantes/genética , Reação em Cadeia da Polimerase
16.
Malar J ; 15: 165, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979404

RESUMO

BACKGROUND: Experimental huts are simplified, standardized representations of human habitations that provide model systems to evaluate insecticides used in indoor residual spray (IRS) and long-lasting insecticidal nets (LLINs) to kill disease vectors. Hut volume, construction materials and size of entry points impact mosquito entry and exposure to insecticides. The performance of three standard experimental hut designs was compared to evaluate insecticide used in LLINs. METHODS: Field studies were conducted at the World Health Organization Pesticide Evaluation Scheme (WHOPES) testing site in Muheza, Tanzania. Three East African huts, three West African huts, and three Ifakara huts were compared using Olyset(®) and Permanet 2.0(®) versus untreated nets as a control. Outcomes measured were mortality, induced exophily (exit rate), blood feeding inhibition and deterrence (entry rate). Data were analysed using linear mixed effect regression and Bland-Altman comparison of paired differences. RESULTS: A total of 613 mosquitoes were collected in 36 nights, of which 13.5% were Anopheles gambiae sensu lato, 21% Anopheles funestus sensu stricto, 38% Mansonia species and 28% Culex species. Ifakara huts caught three times more mosquitoes than the East African and West African huts, while the West African huts caught significantly fewer mosquitoes than the other hut types. Mosquito densities were low, very little mosquito exit was measured in any of the huts with no measurable exophily caused by the use of either Olyset or Permanet. When the huts were directly compared, the West African huts measured greater exophily than other huts. As unholed nets were used in the experiments and few mosquitoes were captured, it was not possible to measure difference in feeding success either between treatments or hut types. In each of the hut types there was increased mortality when Permanet or Olyset were present inside the huts compared to the control, however this did not vary between the hut types. CONCLUSIONS: Both East African and Ifakara huts performed in a similar way although Ifakara huts allowed more mosquitoes to enter, increasing data power. The work convincingly demonstrates that the East African huts and Ifakara huts collect substantially more mosquitoes than the West African huts.


Assuntos
Entomologia/métodos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/fisiologia , Mosquiteiros Tratados com Inseticida , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Animais , Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Culex/efeitos dos fármacos , Culex/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Malvaceae/efeitos dos fármacos , Malvaceae/fisiologia , Análise de Sobrevida , Tanzânia
17.
Malar J ; 15: 176, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26993981

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the first line choice for malaria vector control in sub-Saharan Africa, with most countries adopting universal coverage campaigns. However, there is only limited information on LLIN durability under user conditions. Therefore, this study aimed to assess the durability of Olyset(®) LLINs distributed during campaigns between 2009 and 2011 in Tanzania. METHODS: A retrospective field survey was conducted in eight districts in Tanzania mainland to assess the durability of Olyset campaign nets. Household questionnaires were used to assess attrition, i.e. net loss. All nets remaining in households were collected. A sub-sample of 198 Olyset campaign nets was examined for bio-efficacy against Anopheles gambiae s.s. mosquitoes, permethrin content and physical integrity following standard World Health Organization (WHO) methods. RESULTS: Of 6067 campaign nets reported to have been received between 2009 and 2011, 35% (2145 nets) were no longer present. Most of those nets had been discarded (84%) mainly because they were too torn (94%). Of the 198 sub-sampled Olyset LLINs, 61% were still in serviceable physical condition sufficient to provide personal protection while 39% were in unserviceable physical condition according to WHO proportionate Hole Index (pHI). More than 96% (116/120) of nets in serviceable condition passed WHO bioefficacy criteria while all nets in unserviceable condition passed WHO bioefficacy criteria. Overall mean permethrin content was 16.5 g/kg (95% CI 16.2-16.9) with 78% of the sub-sampled nets retaining recommended permethrin content regardless of their age or physical condition. Nets aged 4 years and above had a mean permethrin content of 14 g/kg (95% CI 12.0-16.0). The only statistically significant predictor of reduced physical net integrity was rats in the house. CONCLUSIONS: Two-to-four years after a mass campaign, only 39% of distributed nets remain both present and in serviceable physical condition, a functional survival considerably below WHO assumptions of 50% survival of a 'three-year' net. However, the majority of nets still retained substantial levels of permethrin and could still be bio-chemically useful against mosquitoes if their holes were repaired, adding evidence to the value of net care and repair campaigns.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Controle de Mosquitos/métodos , Animais , Anopheles/efeitos dos fármacos , Bioensaio , Estudos Transversais , Características da Família , Humanos , Inseticidas/análise , Inseticidas/farmacologia , Permetrina/análise , Permetrina/farmacologia , Estudos Retrospectivos , Inquéritos e Questionários , Tanzânia
18.
BMC Public Health ; 16: 633, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27456339

RESUMO

BACKGROUND: Despite considerable reductions in malaria achieved by scaling-up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), maintaining sustained community protection remains operationally challenging. Increasing insecticide resistance also threatens to jeopardize the future of both strategies. Non-pyrethroid insecticide-treated wall lining (ITWL) may represent an alternate or complementary control method and a potential tool to manage insecticide resistance. To date no study has demonstrated whether ITWL can reduce malaria transmission nor provide additional protection beyond the current best practice of universal coverage (UC) of LLINs and prompt case management. METHODS/DESIGN: A two-arm cluster randomized controlled trial will be conducted in rural Tanzania to assess whether non-pyrethroid ITWL and UC of LLINs provide added protection against malaria infection in children, compared to UC of LLINs alone. Stratified randomization based on malaria prevalence will be used to select 22 village clusters per arm. All 44 clusters will receive LLINs and half will also have ITWL installed on interior house walls. Study children, aged 6 months to 11 years old, will be enrolled from each cluster and followed monthly to estimate cumulative incidence of malaria parasitaemia (primary endpoint), time to first malaria episode and prevalence of anaemia before and after intervention. Entomological inoculation rate will be estimated using indoor CDC light traps and outdoor tent traps followed by detection of Anopheles gambiae species, sporozoite infection, insecticide resistance and blood meal source. ITWL bioefficacy and durability will be monitored using WHO cone bioassays and household surveys, respectively. Social and cultural factors influencing community and household ITWL acceptability will be explored through focus-group discussions and in-depth interviews. Cost-effectiveness, compared between study arms, will be estimated per malaria case averted. DISCUSSION: This protocol describes the large-scale evaluation of a novel vector control product, designed to overcome some of the known limitations of existing methods. If ITWL is proven to be effective and durable under field conditions, it may warrant consideration for programmatic implementation, particularly in areas with long transmission seasons and where pyrethroid-resistant vectors predominate. Trial findings will provide crucial information for policy makers in Tanzania and other malaria-endemic countries to guide resource allocations for future control efforts. TRIAL REGISTRATION: NCT02533336 registered on 13 July 2014.


Assuntos
Exposição Ambiental/análise , Inseticidas/administração & dosagem , Malária/prevenção & controle , Controle de Mosquitos/métodos , Anemia/epidemiologia , Bioensaio , Criança , Pré-Escolar , Protocolos Clínicos , Análise por Conglomerados , Exposição Ambiental/prevenção & controle , Feminino , Humanos , Incidência , Lactente , Resistência a Inseticidas , Malária/epidemiologia , Malária/transmissão , Masculino , Avaliação de Resultados em Cuidados de Saúde , Parasitemia/epidemiologia , Prevalência , População Rural , Inquéritos e Questionários , Tanzânia/epidemiologia
19.
Malar J ; 14: 104, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25885457

RESUMO

BACKGROUND: Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. In order to better understand the ongoing changes in vector-parasite dynamics in the area, and to allow for appropriate adjustment of control activities, the present study examined the composition, and malaria and lymphatic filarial infection, of sibling species of the Anopheles funestus group. Similar to the An. gambiae complex, the An. funestus group contains important vectors of both malaria and lymphatic filariasis. METHODS: Archived (from 2005-2012) and newly collected (from 2014) specimens of the An. funestus group collected indoors using CDC light traps in villages in northeastern Tanzania were analysed. They were identified to sibling species by PCR based on amplification of species-specific nucleotide sequence in the ITS2 region on rDNA genes. The specimens were furthermore examined for infection with Plasmodium falciparum and Wuchereria bancrofti by PCR. RESULTS: The identified sibling species were An. funestus s.s., Anopheles parensis, Anopheles rivulorum, and Anopheles leesoni, with the first being by far the most common (overall 94.4%). When comparing archived specimens from 2005-2007 to those from 2008-2012, a small but statistically significant decrease in proportion of An. funestus s.s. was noted, but otherwise observed temporal changes in sibling species composition were minor. No P. falciparum was detected in archived specimens, while 8.3% of the newly collected An. funestus s.s. were positive for this parasite. The overall W. bancrofti infection rate decreased from 14.8% in the 2005-2007 archived specimens to only 0.5% in the newly collected specimens, and with overall 93.3% of infections being in An. funestus s.s. CONCLUSION: The study indicated that the composition of the An. funestus group had remained rather stable during the study period, with An. funestus s.s. being the most predominant. The study also showed increasing P. falciparum infection and decreasing W. bancrofti infection in An. funestus s.s. in the study period, most likely reflecting infection levels with these parasites in the human population in the area.


Assuntos
Anopheles/genética , Anopheles/parasitologia , Filariose Linfática/transmissão , Malária/transmissão , Animais , Anopheles/classificação , Tanzânia
20.
Malar J ; 14: 225, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26025026

RESUMO

BACKGROUND: Insecticide-treated nets are the primary method of preventing malaria. To remain effective, the pyrethroid insecticide must withstand multiple washes over the lifetime of the net. ICON(®) Maxx is a 'dip-it-yourself' kit for long-lasting treatment of polyester nets. The twin-sachet kit contains a slow-release capsule suspension of lambda-cyhalothrin plus binding agent. To determine whether ICON Maxx meets the standards required by the World Health Organization Pesticide Evaluation Scheme (WHOPES), the efficacy and wash fastness of ICON Maxx was evaluated against wild, free-flying anopheline mosquitoes. METHODS: ICON Maxx was subjected to bioassay evaluation and experimental hut trial against pyrethroid-susceptible Anopheles gambiae, Anopheles arabiensis and Anopheles funestus. Mosquito mortality, blood feeding inhibition and personal protection were compared between untreated nets, conventional lambda-cyhalothrin treated nets (CTN) washed either four times (cut-off threshold) or 20 times, and ICON Maxx-treated nets either unwashed or washed 20 times. RESULTS: In bioassay, ICON Maxx demonstrated superior wash resistance to the CTN. In the experimental hut trial, ICON Maxx killed 75 % of An. funestus, 71 % of An. gambiae and 47 % of An. arabiensis when unwashed and 58, 66 and 42 %, respectively, when 20 times washed. The CTN killed 52 % of An. funestus, 33 % of An. gambiae and 30 % of An. arabiensis when washed to the cut-off threshold of four washes and 40, 40 and 36 %, respectively, when 20 times washed. Percentage mortality with ICON Maxx 20 times washed was similar (An. funestus) or significantly higher (An. gambiae, An. arabiensis) than with CTN washed to the WHOPES cut-off threshold. Blood-feeding inhibition with ICON Maxx 20 times washed was similar to the CTN washed to cut-off for all three species. Personal protection was significantly higher with ICON Maxx 20 times washed (66-79 %) than with CTN washed to cut-off (48-60 %). CONCLUSIONS: Nets treated with ICON Maxx and washed 20 times met the approval criteria set by WHOPES for Phase II trials in terms of mortality and blood-feeding inhibition. This finding raises the prospect of conventional polyester nets and other materials being made long-lastingly insecticidal through simple dipping in community or home, and thus represents a major advance over conventional pyrethroid treatments.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Nitrilas , Piretrinas , Animais , Feminino , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA