Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 73(6): 1537-1545, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635279

RESUMO

Background: Candida auris has emerged as a serious threat to human health. Of particular concern are the resistance profiles of many clinical isolates, with some being resistant to multiple classes of antifungals. Objectives: Measure susceptibilities of C. auris isolates, in planktonic and biofilm forms, to ceragenins (CSAs). Determine the effectiveness of selected ceragenins in gel and cream formulations in eradicating fungal infections in tissue explants. Materials and methods: A collection of 100 C. auris isolates available at CDC was screened for susceptibility to a lead ceragenin. A smaller collection was used to characterize antifungal activities of other ceragenins against organisms in planktonic and biofilm forms. Effects of ceragenins on fungal cells and biofilms were observed via microscopy. An ex vivo model of mucosal fungal infection was used to evaluate formulated forms of lead ceragenins. Results: Lead ceragenins displayed activities comparable to those of known antifungal agents against C. auris isolates with MICs of 0.5-8 mg/L and minimum fungicidal concentrations (MFCs) of 2-64 mg/L. No cross-resistance with other antifungals was observed. Fungal cell morphology was altered in response to ceragenin treatment. Ceragenins exhibited activity against sessile organisms in biofilms. Gel and cream formulations including 2% CSA-44 or CSA-131 resulted in reductions of over 4 logs against established fungal infections in ex vivo mucosal tissues. Conclusions: Ceragenins demonstrated activity against C. auris, suggesting that these compounds warrant further study to determine whether they can be used for topical applications to skin and mucosal tissues for treatment of infections with C. auris and other fungi.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Farmacorresistência Fúngica , Esteroides/farmacologia , Animais , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Técnicas de Cultura de Células , Descoberta de Drogas , Feminino , Géis/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Creme para a Pele/farmacologia , Esteroides/química , Suínos , Vagina/citologia , Vagina/efeitos dos fármacos , Vagina/microbiologia
2.
Toxins (Basel) ; 9(7)2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657583

RESUMO

Staphylococcus aureus (S. aureus) produces many different exotoxins including the gamma-toxins, HlgAB and HlgCB. Gamma-toxins form pores in both leukocyte and erythrocyte membranes, resulting in cell lysis. The genes encoding gamma-toxins are present in most strains of S. aureus, and are commonly expressed in clinical isolates recovered from menstrual Toxic Shock Syndrome (mTSS) patients. This study set out to investigate the cytotoxic and proinflammatory effects of gamma-toxins on vaginal epithelial surfaces. We found that both HlgAB and HlgCB were cytotoxic to cultured human vaginal epithelial cells (HVECs) and induced cytokine production at sub-cytotoxic doses. Cytokine production induced by gamma-toxin treatment of HVECs was found to involve epidermal growth factor receptor (EGFR) signaling and mediated by shedding of EGFR ligands from the cell surface. The gamma-toxin subunits displayed differential binding to HVECs (HlgA 93%, HlgB 97% and HlgC 28%) with both components (HlgAB or HlgCB) required for maximum detectable binding and significant stimulation of cytokine production. In studies using full thickness ex vivo porcine vaginal mucosa, HlgAB or HlgCB stimulated a dose-dependent cytokine response, which was reduced significantly by inhibition of EGFR signaling. The effects of gamma-toxins on porcine vaginal tissue and cultured HVECs were validated using ex vivo human ectocervical tissue. Collectively, these studies have identified the EGFR-signaling pathway as a key component in gamma-toxin-induced proinflammatory changes at epithelial surfaces and highlight a potential therapeutic target to diminish toxigenic effects of S. aureus infections.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Receptores ErbB/metabolismo , Proteínas Hemolisinas/toxicidade , Inflamação/metabolismo , Vagina/efeitos dos fármacos , Animais , Colo do Útero/efeitos dos fármacos , Colo do Útero/metabolismo , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/antagonistas & inibidores , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Mucosa/efeitos dos fármacos , Mucosa/metabolismo , Coelhos , Transdução de Sinais/efeitos dos fármacos , Suínos , Vagina/citologia , Vagina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA