RESUMO
BACKGROUND: In this study, we compared programmed death-ligand 1 (PD-L1) expression in primary tissue samples and its soluble form (sPD-L1) concentration in matched preoperative plasma samples from gastric cancer patients to understand the relationship between tissue and plasma PD-L1 expression and to determine its diagnostic and prognostic value. METHODS: PD-L1 expression in tissue was assessed by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), and sPD-L1 concentration in plasma was quantified by ELISA. The levels of the CD274 gene, which encodes for PD-L1 protein, were examined as part of bulk tissue RNA-sequencing analyses. Additionally, we evaluated the association between sPD-L1 levels and various laboratory parameters, disease characteristics, and patient outcomes. RESULTS: GC patients had significantly higher levels of sPD-L1 in their plasma (71.69 pg/mL) compared to healthy controls (35.34 pg/mL) (p < 0.0001). Moreover, sPD-L1 levels were significantly correlated with tissue PD-L1 protein, CD274 mRNA expression, larger tumor size, advanced tumor stage, and lymph node metastasis. Elevated sPD-L1 levels (> 103.5 ng/mL) were associated with poor overall survival (HR = 2.16, 95%CI 1.15-4.08, p = 0.017). Furthermore, intratumoral neutrophil and dendritic cell levels were directly correlated with plasma sPD-L1 concentration in the GC patients. CONCLUSIONS: sPD-L1 was readily measurable in GC patients, and its level was associated with GC tissue PD-L1 expression, greater inflammatory cell infiltration, disease progression, and survival. Thus, sPD-L1 may be a useful minimally invasive diagnostic and prognostic biomarker in GC patients.
Assuntos
Antígeno B7-H1 , Neoplasias Gástricas , Humanos , Antígeno B7-H1/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Biomarcadores Tumorais/genéticaRESUMO
OBJECTIVE: Intrahepatic cholangiocarcinoma (ICC)-a rare liver malignancy with limited therapeutic options-is characterised by aggressive progression, desmoplasia and vascular abnormalities. The aim of this study was to determine the role of placental growth factor (PlGF) in ICC progression. DESIGN: We evaluated the expression of PlGF in specimens from ICC patients and assessed the therapeutic effect of genetic or pharmacologic inhibition of PlGF in orthotopically grafted ICC mouse models. We evaluated the impact of PlGF stimulation or blockade in ICC cells and cancer-associated fibroblasts (CAFs) using in vitro 3-D coculture systems. RESULTS: PlGF levels were elevated in human ICC stromal cells and circulating blood plasma and were associated with disease progression. Single-cell RNA sequencing showed that the major impact of PlGF blockade in mice was enrichment of quiescent CAFs, characterised by high gene transcription levels related to the Akt pathway, glycolysis and hypoxia signalling. PlGF blockade suppressed Akt phosphorylation and myofibroblast activation in ICC-derived CAFs. PlGF blockade also reduced desmoplasia and tissue stiffness, which resulted in reopening of collapsed tumour vessels and improved blood perfusion, while reducing ICC cell invasion. Moreover, PlGF blockade enhanced the efficacy of standard chemotherapy in mice-bearing ICC. Conclusion PlGF blockade leads to a reduction in intratumorous hypoxia and metastatic dissemination, enhanced chemotherapy sensitivity and increased survival in mice-bearing aggressive ICC.
Assuntos
Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Fator de Crescimento Placentário/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Neoplasias dos Ductos Biliares/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Humanos , Hipóxia/metabolismo , Camundongos , Fator de Crescimento Placentário/antagonistas & inibidoresRESUMO
BACKGROUND AND AIMS: Activation of the antitumor immune response using programmed death receptor-1 (PD-1) blockade showed benefit only in a fraction of patients with hepatocellular carcinoma (HCC). Combining PD-1 blockade with antiangiogenesis has shown promise in substantially increasing the fraction of patients with HCC who respond to treatment, but the mechanism of this interaction is unknown. APPROACH AND RESULTS: We recapitulated these clinical outcomes using orthotopic-grafted or induced-murine models of HCC. Specific blockade of vascular endothelial receptor 2 (VEGFR-2) using a murine antibody significantly delayed primary tumor growth but failed to prolong survival, while anti-PD-1 antibody treatment alone conferred a minor survival advantage in one model. However, dual anti-PD-1/VEGFR-2 therapy significantly inhibited primary tumor growth and doubled survival in both models. Combination therapy reprogrammed the immune microenvironment by increasing cluster of differentiation 8-positive (CD8+ ) cytotoxic T cell infiltration and activation, shifting the M1/M2 ratio of tumor-associated macrophages and reducing T regulatory cell (Treg) and chemokine (C-C motif) receptor 2-positive monocyte infiltration in HCC tissue. In these models, VEGFR-2 was selectively expressed in tumor endothelial cells. Using spheroid cultures of HCC tissue, we found that PD-ligand 1 expression in HCC cells was induced in a paracrine manner upon anti-VEGFR-2 blockade in endothelial cells in part through interferon-gamma expression. Moreover, we found that VEGFR-2 blockade increased PD-1 expression in tumor-infiltrating CD4+ cells. We also found that under anti-PD-1 therapy, CD4+ cells promote normalized vessel formation in the face of antiangiogenic therapy with anti-VEGFR-2 antibody. CONCLUSIONS: We show that dual anti-PD-1/VEGFR-2 therapy has a durable vessel fortification effect in HCC and can overcome treatment resistance to either treatment alone and increase overall survival in both anti-PD-1 therapy-resistant and anti-PD-1 therapy-responsive HCC models.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos/uso terapêutico , Carcinoma Hepatocelular/irrigação sanguínea , Linhagem Celular Tumoral , Neoplasias Hepáticas/irrigação sanguínea , Linfócitos do Interstício Tumoral , Camundongos , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/imunologia , Esferoides Celulares , Linfócitos T Citotóxicos , Macrófagos Associados a Tumor , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologiaRESUMO
N-methyl-N-nitrosourea (MNU) is known to cause apoptosis of photoreceptor cells and changes in retinal pigment epithelium (RPE). However, the changes in choriocapillaris, which nourishes photoreceptor cells by diffusing tissue fluid through RPE, have not been reported in detail. Therefore, we studied the ultrastructural transformation in and around the choriocapillaris to characterize the interdependence between choriocapillaris and surrounding tissue components in a mouse model. Seven-week-old male C57BL/6 mice were given a single intraperitoneal injection of MNU (60 mg/kg of body weight). Perfusion-fixed eyeballs were examined chronologically using immunohistochemistry and electron microscopy until the photoreceptor cells were lost. Sequential ultrastructural changes were observed in photoreceptor cells, RPE, Bruch's membrane, choriocapillaris, and choroidal melanocytes after an MNU injection. The lumens of the choriocapillaris narrowed following dilation, and the vascular endothelium showed structural alterations. When the photoreceptor cells were completely lost, the choriocapillaris appeared to be in a recovery process. Our results suggest that transport abnormality through Bruch's membrane and structural changes in the choroid might have influenced the morphology of choriocapillaris. The thin wall of the choriocapillaris appears to be the cause of the vulnerability with its altered morphology.
Assuntos
Corioide/ultraestrutura , Metilnitrosoureia/toxicidade , Degeneração Retiniana/patologia , Animais , Apoptose/efeitos dos fármacos , Corioide/efeitos dos fármacos , Corioide/patologia , Modelos Animais de Doenças , Humanos , Injeções Intraperitoneais , Masculino , Metilnitrosoureia/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/ultraestrutura , Degeneração Retiniana/induzido quimicamente , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/ultraestruturaRESUMO
PURPOSE: Pulmonary microvascular injury is associated with the pathogenesis of bronchopulmonary dysplasia (BPD). To characterize the mechanisms of pulmonary vascular disease resulting from BPD, we studied the ultrastructural changes affecting pulmonary microvasculature. METHODS: Newborn ICR mice were exposed to 85% hyperoxia or normoxia for 14 days, and then normal air replacement conditions for the following 7 days. At postnatal day (P)14 and P21, lungs were harvested for ultrastructural examination and assessment of pulmonary hypertension. RESULTS: The ultrastructure of pulmonary microvasculature in the hyperoxia-exposed lungs revealed a collapsed capillary lumen. This was due to the abnormal morphology of endothelial cells (ECs) characterized by heterogeneously thick cytoplasm. Compared to normal air controls, the specimens displayed also remarkably thick blood-air barriers (BABs), most of which were occupied by EC layer components. Structural changes were accompanied by increased pulmonary artery medial thickness and right ventricular hypertrophy (RVH). Moreover, abnormalities in ECs persisted even after exposure to 7 days of normal air replacement conditions. Results were confirmed by morphometric quantification. CONCLUSION: Our results suggest that the abnormal morphology of capillary ECs and thick BABs correlates with pulmonary artery remodeling and RVH. These ultrastructural changes might represent possible mechanisms of secondary pulmonary hypertension in BPD.
Assuntos
Displasia Broncopulmonar/patologia , Hiperóxia/complicações , Hipertensão Pulmonar/patologia , Microvasos/ultraestrutura , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Endotélio Vascular/ultraestrutura , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/ultraestrutura , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Microvasos/citologia , Microvasos/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/ultraestruturaRESUMO
The vasohibin (VASH) family consists of two genes, VASH1 and VASH2. VASH1 is mainly expressed in vascular endothelial cells and suppresses angiogenesis in an autocrine manner, whereas VASH2 is mainly expressed in cancer cells and exhibits pro-angiogenic activity. Employing adenomatous polyposis coli gene mutant mice, we recently reported on the role of Vash2 in the spontaneous formation of intestinal tumors. In this study, we used K19-Wnt1/C2mE (Gan) mice and examined the role of Vash2 in spontaneous gastric cancer formation. Gan mice spontaneously develop gastric tumors by activation of Wnt and prostaglandin E2 signaling pathways in gastric mucosa after 30 weeks of age. Expression of Vash2 mRNA was significantly increased in gastric tumor tissues compared with normal stomach tissues. When Gan mice were crossed with the Vash2-deficient (Vash2LacZ/LacZ ) strain, gastric cancer formation was significantly suppressed in Vash2LacZ/LacZ Gan mice. Normal composition of gastric mucosa was partially maintained in Vash2LacZ/LacZ Gan mice. Knockout of Vash2 caused minimal reduction of tumor angiogenesis but a significant decrease in cancer-associated fibroblasts (CAF) in tumor stroma. DNA microarray analysis and real-time RT-PCR showed that mRNA levels of epiregulin (Ereg) and interleukin-11 (Il11) were significantly downregulated in gastric tumors of Vash2LacZ/LacZ Gan mice. Furthermore, conditioned medium of gastric cancer cells stimulated migration of and α-smooth muscle actin expression in fibroblasts, whereas conditioned medium of VASH2 knockdown cells attenuated these effects in vitro. These results suggest that VASH2 plays an important role in gastric tumor progression via the accumulation of CAF accompanying upregulation of EREG and IL-11 expression.
Assuntos
Proteínas Angiogênicas/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Gástricas/patologia , Animais , Fibroblastos Associados a Câncer/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Gástricas/metabolismoRESUMO
UNLABELLED: Sorafenib, a broad tyrosine kinase inhibitor, is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC) but provides limited survival benefits. Recently, immunotherapy has emerged as a promising treatment strategy, but its role remains unclear in HCCs, which are associated with decreased cytotoxic CD8(+) T-lymphocyte infiltration in both murine and human tumors. Moreover, in mouse models after sorafenib treatment intratumoral hypoxia is increased and may fuel evasive resistance. Using orthotopic HCC models, we now show that increased hypoxia after sorafenib treatment promotes immunosuppression, characterized by increased intratumoral expression of the immune checkpoint inhibitor programmed death ligand-1 and accumulation of T-regulatory cells and M2-type macrophages. We also show that the recruitment of immunosuppressive cells is mediated in part by hypoxia-induced up-regulation of stromal cell-derived 1 alpha. Inhibition of the stromal cell-derived 1 alpha receptor (C-X-C receptor type 4 or CXCR4) using AMD3100 prevented the polarization toward an immunosuppressive microenvironment after sorafenib treatment, inhibited tumor growth, reduced lung metastasis, and improved survival. However, the combination of AMD3100 and sorafenib did not significantly change cytotoxic CD8(+) T-lymphocyte infiltration into HCC tumors and did not modify their activation status. In separate experiments, antibody blockade of the programmed death ligand-1 receptor programmed death receptor-1 (PD-1) showed antitumor effects in treatment-naive tumors in orthotopic (grafted and genetically engineered) models of HCC. However, anti-PD-1 antibody treatment had additional antitumor activity only when combined with sorafenib and AMD3100 and not when combined with sorafenib alone. CONCLUSION: Anti-PD-1 treatment can boost antitumor immune responses in HCC models; when used in combination with sorafenib, anti-PD-1 immunotherapy shows efficacy only with concomitant targeting of the hypoxic and immunosuppressive microenvironment with agents such as CXCR4 inhibitors.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Imunoterapia/métodos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Receptores CXCR4/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Humanos , Camundongos , Niacinamida/uso terapêutico , SorafenibeRESUMO
A key goal of vaccine immunotherapy is the generation of long-term memory CD8(+) T cells capable of mediating immune surveillance. We discovered a novel intercellular pathway governing the development of potent memory CD8(+) T cell responses against cell-associated Ags that is mediated through cross-presentation by XCR1(+) dendritic cells (DCs). Generation of CD8(+) memory T cells against tumor cells pulsed with an invariant NKT cell ligand depended on cross-talk between XCR1(+) and plasmacytoid DCs that was regulated by IFN-α/IFN-αR signals. IFN-α production by plasmacytoid DCs was stimulated by an OX40 signal from the invariant NKT cells, as well as an HMGB1 signal from the dying tumor cells. These findings reveal a previously unknown pathway of intercellular collaboration for the generation of tumor-specific CD8(+) memory T cells that can be exploited for strategic vaccination in the setting of tumor immunotherapy.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Memória Imunológica , Células T Matadoras Naturais/imunologia , Animais , Linhagem Celular Tumoral , Quimiotaxia/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interleucina-12/biossíntese , Ligantes , Camundongos , Neoplasias/imunologia , Transdução de SinaisRESUMO
BACKGROUND: Vasohibin-2 (VASH2) has been identified as an endogenous and vascular endothelial growth factor (VEGF)-independent angiogenic factor that is highly expressed in tumor cells. In the present study, we aimed to determine whether pre-existing vascular changes can be used to predict tumor transformation as benign or malignant. We sought to characterize microvascular changes and tumor development in the intestinal tract of ApcMin/+ mice and ApcMin/+/Vash2-/- mice. METHODS: ApcMin/+ mice provide a unique orthotopic model for the development of spontaneous adenomatous polyposis and subsequent carcinomas, a phenomenon termed the adenoma-carcinoma sequence. ApcMin/+ mice were mated with Vash2-/- mice with a mixed C57BL/6 background and the resulting pups were screened for the Min mutation and for the Vash2-/- gene by PCR. Intestinal tumors from ApcMin/+ mice and ApcMin/+/Vash2-/- mice were removed and either frozen or epon-embedded for subsequent analyses. For 3-dimensional imaging using confocal laser-scanning microscopy and transmission electron microscopy, cryosections were made, and immunofluorescent staining for various markers was performed. RESULTS: We found that structural abnormalities in tumor vessels from benign tumors resembled those in malignant tumors. In addition, a novel angiogenic factor, vasohibin-2 (VASH2) protein, was detected around tumor blood vessels in late-stage adenomas and adenocarcinomas, but was absent from early-stage adenomas in ApcMin/+ mice. Tumors used to examine endogenous VASH2 (derived from CMT93 colon carcinomas) were less vascularized in Vash2-/- mice and were more regular than those seen in wild-type (WT) mice. In addition, tumors in Vash2-/- mice were smaller than those in WT mice. Furthermore, cross-breeding of mice homozygous for a deletion of Vash2 with mice heterozygous for the APC mutation resulted in animals that showed a significant decrease in the number of polyps in the small intestine. CONCLUSION: We propose that VASH2 may modulate the onset of tumors in the gastrointestinal tract by regulating tumor angiogenesis.
Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Proteínas Angiogênicas/genética , Trato Gastrointestinal/metabolismo , Regulação Neoplásica da Expressão Gênica , Neovascularização Patológica/prevenção & controle , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/metabolismo , Proteínas Angiogênicas/metabolismo , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Cruzamentos Genéticos , Progressão da Doença , Feminino , Trato Gastrointestinal/irrigação sanguínea , Trato Gastrointestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de SinaisRESUMO
The endometrium undergoes continuous repair and regeneration without scarring throughout the reproductive life of women. However, the mechanisms responsible for this complete restoration remain mostly unexplored. We hypothesized that the ischemic state and local hypoxia present after parturition may create a special microenvironment for endometrial healing, and that this ischemia might be caused by reduction in organ volume via postpartum uterine contraction. Here, we developed a mouse model using a combination of cesarean section and the administration of a beta 2 adrenergic receptor agonist (ritodrine hydrochloride) in postpartum mice that had been ovariectomized to exclude the effect of ovarian hormones. Our results revealed that transient hypoxia indeed occurred in postpartum uteri. Furthermore, we found that the number of M2 macrophages, which play a central role in wound healing, peaked on Postpartum Day 3 and gradually decreased thereafter in hypoxic injury sites. Almost concurrently, significant upregulation of vascular endothelial growth factor and transforming growth factor beta (TGFbeta) was observed. In particular, the antifibrotic factor TGFbeta3 was released during the endometrial healing process. These changes were significantly suppressed by inhibition of uterine contraction. Taken together, these results suggest that uterine contraction is essential, not only for hemostasis, but also for endometrial regeneration, leading to a process that involves the activation of macrophages, increased endometrial cell proliferation, and upregulation of nonfibrotic growth factors. This study paves the way to a novel approach for investigating the process of scarless wound healing.
Assuntos
Endométrio/fisiologia , Período Pós-Parto/fisiologia , Regeneração/fisiologia , Contração Uterina/fisiologia , Animais , Endométrio/citologia , Feminino , Macrófagos/citologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Miométrio/fisiologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
With approximately one million diagnosed cases and over 700,000 deaths recorded annually, gastric cancer (GC) is the third most common cause of cancer-related deaths worldwide. GC is a heterogeneous tumor. Thus, optimal management requires biomarkers of prognosis, treatment selection, and treatment response. The Cancer Genome Atlas program sub-classified GC into molecular subtypes, providing a framework for treatment personalization using traditional chemotherapies or biologics. Here, we report a comprehensive study of GC vascular and immune tumor microenvironment (TME)-based on stage and molecular subtypes of the disease and their correlation with outcomes. Using tissues and blood circulating biomarkers and a molecular classification, we identified cancer cell and tumor archetypes, which show that the TME evolves with the disease stage and is a major determinant of prognosis. Moreover, our TME-based subtyping strategy allowed the identification of archetype-specific prognostic biomarkers such as CDH1-mutant GC and circulating IL-6 that provided information beyond and independent of TMN staging, MSI status, and consensus molecular subtyping. The results show that integrating molecular subtyping with TME-specific biomarkers could contribute to improved patient prognostication and may provide a basis for treatment stratification, including for contemporary anti-angiogenesis and immunotherapy approaches.
RESUMO
Radiotherapy (RT) is a standard treatment for patients with advanced prostate cancer (PCa). Previous preclinical studies showed that SDF1α/CXCR4 axis could mediate PCa metastasis (most often to the bones) and cancer resistance to RT. We found high levels of expression for both SDF1α and its receptor CXCR4 in primary and metastatic PCa tissue samples. In vitro analyses using PCa cells revealed an important role of CXCR4 in cell invasion but not radiotolerance. Pharmacologic inhibition of CXCR4 using AMD3100 showed no efficacy in orthotopic primary and bone metastatic PCa models. However, when combined with RT, AMD3100 potentiated the effect of local single-dose RT (12 Gy) in both models. Moreover, CXCR4 inhibition also reduced lymph node metastasis from primary PCa. Notably, CXCR4 inhibition promoted the normalization of bone metastatic PCa vasculature and reduced tissue hypoxia. In conclusion, the SDF1α/CXCR4 axis is a potential therapeutic target in metastatic PCa patients treated with RT.
RESUMO
BACKGROUND: This article summarizes a global study of the effect of the COVID-19 pandemic on junior health professions students' outlook on medicine. The pandemic has significantly affected health professions education. There is limited understanding of how students' pandemic experiences will affect them, and what impact these events may have on their career paths or the future of the professions. This information is important as it impacts the future of medicine. METHODS: In the Fall 2020 semester, 219 health professions students at 14 medical universities worldwide responded to the question: 'Has this experience (with COVID-19) changed your outlook on medicine as a profession?'. Short essay responses were semantically coded and organized into themes and subthemes using an inductive approach to thematic analysis. RESULTS: 145 responses were submitted. Themes were identified: (1) students reflected on the interaction between politics and healthcare; (2) reported becoming more aware of the societal expectations placed on healthcare professionals, including undertaking high risks and the sacrifices that healthcare professionals must make; (3) found reassurance from the recognized importance of healthcare professionals and expressed pride to be entering the profession; and (4) reflected on the current state of healthcare, including its limitations and future. CONCLUSION: Most students, independent of the extent of the pandemic in their respective countries, noted a change in their outlook regarding medicine. An overall positive outlook was noted in most junior students. Educators need to work on nurturing these sentiments and attitudes to help young students maintain a healthy relationship towards their chosen profession.
RESUMO
BACKGROUND/AIM: STAT3 is involved in the progression of several cancers, and has been proposed as target for therapy. Indeed, the multitargeted tyrosine kinase inhibitor drug regorafenib, which indirectly inhibits STAT3, can significantly enhance the effects of anti-programmed death receptor (PD)-1 therapy in hepatocellular carcinoma (HCC) models. Here, we studied the impact of a direct STAT3 inhibitor on the tumor microenvironment and PD-1 blockade efficacy in HCC models. MATERIALS AND METHODS: Orthotopic mouse models of HCC (RIL-175 and HCA-1 grafts in syngeneic mice) were used to test the efficacy of the selective STAT3 inhibitor STX-0119 alone or combined with anti-PD-1 antibodies. We evaluated the effects of therapy on tumor vasculature and the immune microenvironment using immunofluorescence (IF), cell viability assay and quantitative real-time (qRT)-PCR in tumor tissues. RESULTS: Combining anti-PD-1 antibodies with a STX-0119 failed to show a growth delay or survival benefit compared to each agent alone or control in any of the HCC models. Interestingly, evaluation of intratumoral CD8+ T cell infiltration by IF showed a significant increase after one-week treatment with STX-0119 (p=0.034). However, STX-0119 treatment simultaneously promoted increased immunosuppression in the tumor microenvironment by increasing the proportion of Tregs, tissue hypoxia and α-SMA activated cancer-associated fibroblasts (CAFs) measured by IF. Consistent with these findings, we found increased immature tumor vessels by IF and VEGF, Tgf-ß and Vash2 expression by qPCR. CONCLUSION: Pharmacologic STAT3 inhibition could significantly enhance CD8+ T cell infiltration in HCC but also significantly alter the immunosuppression and vascular abnormalization in the tumor microenvironment.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Linfócitos T , Animais , Camundongos , Proteínas Angiogênicas , Carcinoma Hepatocelular/patologia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Terapia de Imunossupressão , Neoplasias Hepáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Morte Celular , Fator de Crescimento Transformador beta/farmacologia , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator de Transcrição STAT3/metabolismoRESUMO
Recent advancements have tangibly changed the cancer treatment landscape. However, curative therapy for this dreadful disease remains an unmet need. Sonodynamic therapy (SDT) is a minimally invasive anti-cancer therapy involving a chemical sonosensitizer and focused ultrasound. A high-intensity focused ultrasound (HIFU) beam is used to destroy or denature targeted cancer tissues. Some SDTs are based on unfocused ultrasound (US). In some SDTs, HIFU is combined with a drug, known as a chemical sonosensitizer, to amplify the drug's ability to damage cancer cells preferentially. The mechanism by which US interferes with cancer cell function is further amplified by applying acoustic sensitizers. Combining multiple chemical sonosensitizers with US creates a substantial synergistic effect that could effectively disrupt tumorigenic growth, induce cell death, and elicit an immune response. Therefore, the minimally invasive SDT treatment is currently attracting attention. It can be combined with targeted therapy (double-targeting cancer therapy) and immunotherapy in the future and is expected to be a boon for treating previously incurable cancers. In this paper, we will consider the current state of this therapy and discuss parts of our research.
RESUMO
Introduction: Student outbound mobility is a major element in internationalization of medical education and global health education. However, this approach is often criticized, as it is inherently inequitable. Internationalization at home is a newer concept that aims to provide students with international skills and experiences without exchange travel. We report detailed outcomes of an international online program during the COVID-19 pandemic, which aimed to include acquisition of cultural awareness and competency-similar to what the students would have obtained if they had travelled abroad. Method: Sixty-eight students from 12 international universities participated in international small peer group collaborative work, and online networking. Perceived improvement of cultural competency using Likert scale and open-ended questions was used as a measure of success. Furthermore, students' definition of cultural competency in the different countries was obtained. Results: Students improved their cultural competency skills. Data analysis supported statistically significant improvement of the above skills after the program, in comparison to the start of the program. Discussion: Internationalization of medical education can be achieved at home-via structured online peer exchanges-and can provide students with intercultural skills and networking opportunities that are typically achieved via international in-person travel. The above represents a socially just and equitable way to reach all students and can result in improvement of their cultural competency, preparing them for their work in global health, and thereby resulting in improvement of global health. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-021-01332-9.
RESUMO
BACKGROUND: Medical and dental students' feelings and thoughts about the topic of death and life's passing are often associated with learning in the gross anatomy course, when students begin working with a deceased body donor in order to study human anatomy. Little is known of whether the format of anatomy teaching has an impact on these experiences. An observational study was performed to capture the initiation of students' sentiments on the topic of life's passing during the anatomy course at 14 international universities, identify common themes regarding these thoughts, and to study the connection to variations in anatomy course formats and included elements. METHOD: Preclinical anatomy students reflected on one question (i.e., "How did your experience in the anatomy laboratory bring about your reflections on the meaning of life and human existence as well as the sanctity of one's passing?"). Written assignments were collected and anonymously coded. Information on anatomy courses was obtained via faculty questionnaires. RESULT: A variety of themes were identified at the different schools, correlated with different anatomy formats and elements. Results indicate that the courses that offer hands-on cadaveric dissections may play an important role in triggering these sentiments. DISCUSSION: The initiation of students' sentiments about the topic of death varies and includes several themes. There can be a connection to the way anatomy is taught, particularly if hands-on comprehensive cadaveric dissection or prosections are included. CONCLUSION: In summary, anatomy courses can initiate students' thinking about life's passing - particularly in schools that offer hands-on cadaveric dissections or prosections.
Assuntos
Anatomia , Educação de Graduação em Medicina , Estudantes de Medicina , Anatomia/educação , Cadáver , Currículo , Dissecação , Humanos , Inquéritos e Questionários , UniversidadesRESUMO
This study conveys preclinical healthcare professions students' sentiments at 14 universities during the 2020 COVID-19 pandemic. Essays about students' thoughts and experiences were thematically sorted and revealed a variety of sentiments spanning from positive (e.g., pride, respect) to the more negative (e.g., anxiety, guilt, disappointment, anger). Themes revealed respect for the healthcare profession, but also the realization of its limitations, sacrifices, and risks. Healthcare profession educators need to be aware that the COVID-19 pandemic has affected students emotionally and may have long-term effects on the global healthcare profession. This study can serve as a historic documentation of how this generation of students felt and adds to the literature on how the pandemic affected the healthcare profession.
RESUMO
Because the progression and metastasis of solid tumors depend on their local microcirculation, we sought to characterize tumor angiogenesis three dimensionally in a highly metastatic mouse melanoma model, B16BL6 (B16), injected with Matrigel into the subcutis in the skin on the back of syngeneic C57BL/6 mice. We found that B16 with Matrigel grew significantly faster than B16 alone and had altered tumor angiogenesis. Tumor vessels apparently grew vigorously in the opposite direction of the tumor without invading the tumor mass until at least day 10 of injection. In addition, vascular branching resulted not only from sprouting as was seen in B16 without Matrigel but also from vascular splitting, either because of compression from outside the vessels or from septum formation by endothelial cells. This phenomenon was characteristic of B16 cells, but not of other tumor cells, including Lewis lung carcinoma and ASH-1 hybridoma cell lines, both of which were tested under the same conditions. The reduction in various angiogenic factors in Matrigel did not affect the angiogenic patterns and tumor growth. We hypothesize that tumor vessels may vigorously alter their angiogenic patterns in response to the local microenvironment.
Assuntos
Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Neovascularização Patológica/patologia , Animais , Materiais Biocompatíveis/farmacologia , Colágeno/farmacologia , Combinação de Medicamentos , Imageamento Tridimensional , Laminina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Proteoglicanas/farmacologiaRESUMO
Background: Improving surgical outcomes in hepatocellular carcinoma (HCC) patients would greatly benefit from biomarkers. Angiogenesis and inflammation are hallmarks of HCC progression and therapeutic targets. Methods: We retrospectively evaluated preoperative clinical variables and circulating (plasma) biomarkers of angiogenesis and inflammation in a cohort of HCC patients who underwent liver resection (LR) or transplantation (LT). Biomarker correlation with outcomes-freedom of liver recurrence (FLR), disease-free survival (DFS) and overall survival (OS)-was tested using univariate and multivariate Cox regression analyses. Results: Survival outcomes associated with sVEGFR1, VEGF and VEGF-C in LT patients and with IL-10 in LR patients. Moreover, in LT patients within Milan criteria, higher plasma VEGF and sVEGFR1 were associated with worse outcomes, while in those outside Milan criteria lower plasma VEGF-C associated with better outcomes. Multivariate analysis indicated that adding plasma VEGF or VEGF-C to a predictive model including Milan criteria and AFP improved prediction of DFS and OS (all p < 0.05). Conclusion: Survival outcomes after LR or LT differentially associated with angiogenic and inflammatory biomarkers. High plasma VEGF correlated with poorer prognosis within Milan criteria while low plasma VEGF-C associated with better prognosis outside Milan criteria. These candidate biomarkers should be further validated to improve patient stratification.