Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biochem Biophys Res Commun ; 692: 149364, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070276

RESUMO

The periodontal ligament (PDL) is a critical component in maintaining tooth stability. It is composed of cells and an extracellular matrix (ECM), each with unique roles in tissue function and homeostasis. Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, plays a crucial role in regulating ECM assembly and turnover, alongside facilitating cellular-ECM interactions. In the present study, mass spectrometry-based proteomics was used to assess the impacts of Sparc-knockout (KO) on PDL-derived cells. Results demonstrated that Sparc-KO significantly reduces ECM production and alters its composition with increased levels of type I collagen. Despite this increase in Sparc-KO, type I collagen was not likely to be effectively integrated into the fibrils due to collagen cross-linking impairment. Furthermore, the pathway and process enrichment analyses suggested that SPARC plays a protective role against ECM degradation by antagonistically interacting with cell-surface collagen receptors. These findings provide detailed insights into the multifaceted role of SPARC in ECM organization, including its impact on ECM production, collagen regulation, and interactions with various cellular compartments. A better understanding of these complex mechanisms is crucial for comprehending the causes of periodontal disease and tissue regeneration, where precise control of ECM organization is necessary.


Assuntos
Osteonectina , Ligamento Periodontal , Animais , Camundongos , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Camundongos Knockout , Osteonectina/genética , Osteonectina/metabolismo
2.
Dev Biol ; 482: 91-100, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929174

RESUMO

Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, the unique functions and roles of each IFT during endochondral ossification remain unclear. Here, we show that IFT20 is required for endochondral ossification in mice. Utilizing osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre and Col2-Cre), we deleted Ift20 to examine its function. Although chondrocyte-specific Ift20 deletion with Col2-Cre mice did not cause any overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) mice resulted in shortened limb outgrowth. Primary cilia were absent on chondrocytes of Ift20:Prx1-Cre mice, and ciliary-mediated Hedgehog signaling was attenuated in Ift20:Prx1-Cre mice. Interestingly, loss of Ift20 also increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate that IFT20 is a critical regulator of temporospatial FGF signaling that is required for endochondral ossification.


Assuntos
Proteínas de Transporte/genética , Condrogênese/genética , Cílios/genética , Deformidades Congênitas dos Membros/genética , Osteogênese/genética , Animais , Osso e Ossos/embriologia , Cartilagem/embriologia , Diferenciação Celular/genética , Condrócitos/fisiologia , Condrogênese/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Osteogênese/fisiologia , Fatores de Transcrição SOX9/biossíntese , Transdução de Sinais/fisiologia
3.
Biochem Biophys Res Commun ; 688: 149147, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37948912

RESUMO

Heterotopic ossification (HO) is abnormal bone growth in soft tissues that results from injury, trauma, and rare genetic disorders. Bone morphogenetic proteins (BMPs) are critical osteogenic regulators which are involved in HO. However, it remains unclear how BMP signaling interacts with other extracellular stimuli to form HO. To address this question, using the Cre-loxP recombination system in mice, we conditionally expressed the constitutively activated BMP type I receptor ALK2 with a Q207D mutation (Ca-ALK2) in Cathepsin K-Cre labeled tendon progenitors (hereafter "Ca-Alk2:Ctsk-Cre"). Ca-Alk2:Ctsk-Cre mice were viable but they formed spontaneous HO in the Achilles tendon. Histological and molecular marker analysis revealed that HO is formed via endochondral ossification. Ectopic chondrogenesis coincided with enhanced GLI1 production, suggesting that elevated Hedgehog (Hh) signaling is involved in the pathogenesis of HO. Interestingly, focal adhesion kinase, a critical mediator for the mechanotransduction pathway, was also activated in Ca-Alk2:Ctsk-Cre mice. Our findings suggest that enhanced BMP signaling may elevate Hh and mechanotransduction pathways, thereby causing HO in the regions of the Achilles tendon.


Assuntos
Mecanotransdução Celular , Ossificação Heterotópica , Camundongos , Animais , Catepsina K/metabolismo , Proteínas Hedgehog , Ossificação Heterotópica/metabolismo , Tendões/metabolismo
4.
Immunopharmacol Immunotoxicol ; 45(5): 589-596, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36995736

RESUMO

BACKGROUND: 2-Methoxy-4-vinylphenol (2M4VP) is a natural anti-inflammatory compound derived from red wine, but its underlying mechanism remains unclear. Heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, inhibits NO gene expression, while nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor involved in HO-1 production, binds to the antioxidant response element (ARE) in the nucleus and promotes HO-1 transcription. Based on the hypothesis that the inhibitory effect of 2M4VP on NO production is mediated by HO-1, we examined the possible mechanism of the anti-inflammatory activity of 2M4VP in this study. MATERIALS AND METHODS: The anti-inflammatory activity of 2M4VP was analyzed by Griess method, ELISA, qPCR, and Western blotting using LPS-treated macrophage lineage RAW264.7 cells. The impact of 2M4VP on the Nrf2/ARE pathway was also analyzed using immunocytochemistry and an ARE luciferase reporter using HEK293 cells. RESULTS: The results showed that 2M4VP reduced the production of LPS-induced NO and inducible nitric oxidase synthase (iNOS). In addition, 2M4VP increased the expression of HO-1, while pretreatment with the Nrf2 inhibitor ML385 downregulated HO-1 expression. 2M4VP induced Kelch-like ECH-associated protein 1 (Keap1) degradation. Furthermore, it promoted Nrf2 nuclear translocation and increased luciferase activity by binding to the ARE. CONCLUSIONS: 2M4VP induces Keap1 degradation and promotes Nrf2 nuclear translocation. Activation of Nrf2/ARE pathway enhances HO-1 expression and leads to iNOS inhibition for anti-inflammatory function.


Assuntos
Heme Oxigenase-1 , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredutases , Células HEK293 , Anti-Inflamatórios/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo
5.
Biochem Biophys Res Commun ; 624: 16-22, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35932574

RESUMO

Rab GTPases, the largest group of small monomeric GTPases, have been shown to participate in membrane trafficking involving many cellular processes. However, their roles during osteoblastic differentiation remain to be elucidated. In this study, we investigated Rab GTPase involvement in osteoblastic differentiation. Protein levels of a series of Rabs (Rab4, Rab5, Rab7, Rab9a, Rab11a/b, and Rab27) were increased during osteoblastic differentiation of MC3T3-E1 cells, and the Rab11a/b levels were particularly pronounced in the presence of Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, an activator of osteoblastogenesis. We subsequently investigated the functional contribution of Rab11a and Rab11b during osteoblastic differentiation. The alkaline phosphatase (ALP) levels were reduced by Rab11b depletion but not by Rab11a depletion. Because our result suggested that Rab11a and Rab11b could be regulated downstream of Runx2 (Runt-related transcription factor 2), a key transcription factor for osteoblastic differentiation, we investigated the effects of the double knockdown of Runx2 and Rab11a or Rab11b on osteoblastic phenotypes. The double knockdown significantly reduced ALP activity as well as collagen deposition compared with single Runx2 knockdown. Furthermore, the Rab11a and Rab11b response to mechanical stress in vivo was investigated using a mouse orthodontic tooth movement model. Rab11a and Rab11b expression was enhanced in the periodontal ligament, where bone formation is activated by tensile stress. This study shows that Rab11a and Rab11b are regulated downstream of Runx2 in osteoblastic differentiation, and their expressions are also controlled by tensile stress.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Proteínas rab de Ligação ao GTP , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Osteoblastos/metabolismo , Regulação para Cima , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
PLoS Genet ; 14(5): e1007340, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29718910

RESUMO

Craniofacial abnormalities, including facial skeletal defects, comprise approximately one-third of all birth defects in humans. Since most bones in the face derive from cranial neural crest cells (CNCCs), which are multipotent stem cells, craniofacial bone disorders are largely attributed to defects in CNCCs. However, it remains unclear how the niche of CNCCs is coordinated by multiple gene regulatory networks essential for craniofacial bone development. Here we report that tumor suppressors breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) are required for craniofacial bone development in mice. Disruption of Brca1 in CNCC-derived mesenchymal cells, but not in epithelial-derived cells, resulted in craniofacial skeletal defects. Whereas osteogenic differentiation was normal, both osteogenic proliferation and survival were severely attenuated in Brca1 mutants. Brca1-deficient craniofacial skeletogenic precursors displayed increased DNA damage and enhanced cell apoptosis. Importantly, the craniofacial skeletal defects were sufficiently rescued by superimposing p53 null alleles in a neural crest-specific manner in vivo, indicating that BRCA1 deficiency induced DNA damage, cell apoptosis, and that the pathogenesis of craniofacial bone defects can be compensated by inactivation of p53. Mice lacking Brca2 in CNCCs, but not in epithelial-derived cells, also displayed abnormalities resembling the craniofacial skeletal malformations observed in Brca1 mutants. Our data shed light on the importance of BRCA1/BRCA2 function in CNCCs during craniofacial skeletal formation.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/metabolismo , Osteogênese/genética , Animais , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Proliferação de Células/genética , Células Cultivadas , Anormalidades Craniofaciais/genética , Dano ao DNA , Reparo do DNA/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Crista Neural/citologia , Crânio/embriologia , Crânio/metabolismo
7.
Biochem Biophys Res Commun ; 533(4): 739-744, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32988591

RESUMO

Intraflagellar transport (IFT) is essential for assembling primary cilia required for bone formation. Disruption of IFT frequently leads to bone defects in humans. While it has been well studied about the function of IFT in osteogenic cell proliferation and differentiation, little is known about its role in collagen biosynthesis during bone formation. Here we show that IFT20, the smallest IFT protein in the IFT-B complex, is important for collagen biosynthesis in mice. Deletion of Ift20 in craniofacial osteoblasts displayed bone defects in the face. While collagen protein levels are unaffected by loss of Ift20, collagen cross-linking was significantly altered. In both Ift20:Wnt1-Cre and Ift20:Ocn-Cre mice the bones exhibit increased hydroxylysine-aldehyde deived cross-linking, and decreased lysine-aldehyde derived cross-linking. To obtain insight into the molecular mechanisms, we examined the expression levels of telopeptidyl lysyl hydroxylase 2 (LH2), and associated chaperone complexes. The results demonstrated that, while LH2 levels were unaffected by loss of Ift20, its chaperone, FKBP65, was significantly increased in Ift20:Wnt1-Cre and Ift20:Ocn-Cre mouse calvaria as well as femurs. These results suggest that IFT20 plays a pivotal role in collagen biosynthesis by regulating, in part, telopeptidyl lysine hydroxylation and cross-linking in bone. To the best of our knowledge, this is the first to demonstrate that the IFT components control collagen post-translational modifications. This provides a novel insight into the craniofacial bone defects associated with craniofacial skeletal ciliopathies.


Assuntos
Proteínas de Transporte/metabolismo , Colágeno/biossíntese , Ossos Faciais/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Animais , Proteínas de Transporte/genética , Colágeno/metabolismo , Ossos Faciais/crescimento & desenvolvimento , Deleção de Genes , Imuno-Histoquímica , Camundongos , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a Tacrolimo/metabolismo , Microtomografia por Raio-X
8.
Biochem Biophys Res Commun ; 509(1): 222-226, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30587338

RESUMO

Condylar cartilage is a joint cartilage essential for smooth jaw movement. The importance of ciliary proteins in condylar cartilage development has been reported. However, little is known about how ciliary proteins control the homeostasis of condylar cartilage. Here we show that intraflagellar transport 20 (IFT20), a ciliary protein, is required for the maintenance of cartilaginous matrix in condylar cartilage. Utilizing NG2-CreER mice expressed in condylar cartilage, we deleted Ift20 by tamoxifen treatment at juvenile-to-adult stages. In wild-type condylar cartilage, IFT20 was robustly produced in the cis-Golgi, but deletion of Ift20 by tamoxifen induction of NG2-CreER (Ift20:NG2-CreER) resulted in reduced cell proliferation and decreased Golgi size in condylar cartilage. Importantly, while the primary cilia were present in cartilage cells in the condylar layers of wild-type mice, no primary cilia were present in the Ift20:NG2-CreER condylar layers. Consistent with this finding, ciliary-mediated Hedgehog signaling was severely attenuated in Ift20 mutant chondrocytes, and thus the production levels of type X collagen were significantly reduced in Ift20:NG2-CreER mice. These results suggest that IFT20 is required for Golgi size and Hedgehog signaling to maintain cartilaginous matrix in condylar cartilage. Our study highlights the unique function of IFT20 in the homeostasis of condylar cartilage.


Assuntos
Proteínas de Transporte/metabolismo , Cartilagem Articular/metabolismo , Proteínas Hedgehog/metabolismo , Animais , Proteínas de Transporte/genética , Cartilagem Articular/ultraestrutura , Linhagem Celular , Proliferação de Células , Condrócitos/citologia , Condrócitos/metabolismo , Deleção de Genes , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Camundongos Knockout , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 113(19): E2589-97, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27118846

RESUMO

The primary cilium is a cellular organelle that coordinates signaling pathways critical for cell proliferation, differentiation, survival, and homeostasis. Intraflagellar transport (IFT) plays a pivotal role in assembling primary cilia. Disruption and/or dysfunction of IFT components can cause multiple diseases, including skeletal dysplasia. However, the mechanism by which IFT regulates skeletogenesis remains elusive. Here, we show that a neural crest-specific deletion of intraflagellar transport 20 (Ift20) in mice compromises ciliogenesis and intracellular transport of collagen, which leads to osteopenia in the facial region. Whereas platelet-derived growth factor receptor alpha (PDGFRα) was present on the surface of primary cilia in wild-type osteoblasts, disruption of Ift20 down-regulated PDGFRα production, which caused suppression of PDGF-Akt signaling, resulting in decreased osteogenic proliferation and increased cell death. Although osteogenic differentiation in cranial neural crest (CNC)-derived cells occurred normally in Ift20-mutant cells, the process of mineralization was severely attenuated due to delayed secretion of type I collagen. In control osteoblasts, procollagen was easily transported from the endoplasmic reticulum (ER) to the Golgi apparatus. By contrast, despite having similar levels of collagen type 1 alpha 1 (Col1a1) expression, Ift20 mutants did not secrete procollagen because of dysfunctional ER-to-Golgi trafficking. These data suggest that in the multipotent stem cells of CNCs, IFT20 is indispensable for regulating not only ciliogenesis but also collagen intracellular trafficking. Our study introduces a unique perspective on the canonical and noncanonical functions of IFT20 in craniofacial skeletal development.


Assuntos
Desenvolvimento Ósseo/fisiologia , Anormalidades Craniofaciais/fisiopatologia , Ossos Faciais/fisiologia , Flagelos/fisiologia , Crista Neural/fisiologia , Crânio/fisiologia , Animais , Transporte Biológico Ativo/fisiologia , Proteínas de Transporte , Células Cultivadas , Anormalidades Craniofaciais/patologia , Ossos Faciais/citologia , Flagelos/patologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Modelos Biológicos , Morfogênese/fisiologia , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Crânio/citologia
10.
J Cell Physiol ; 231(9): 1974-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26754153

RESUMO

Considering the increased interest in cell-based bone regeneration, it is necessary to reveal the fate of transplanted cells and their substantive roles in bone regeneration. The aim of this study was to analyze the fate of transplanted cells and the effect of osteogenic cell transplantation on calvarial bone defect healing. An anti-apoptotic protein, heat shock protein (HSP) 27, was overexpressed in osteoblasts. Then, the treated osteoblasts were transplanted to calvarial bone defect and their fate was analyzed to evaluate the significance of transplanted cell survival. Transient overexpression of Hsp27 rescued MC3T3-E1 osteoblastic cells from H2 O2 -induced apoptosis without affecting osteoblastic differentiation in culture. Transplantation of Hsp27-overexpressing cells, encapsulated in collagen gel, showed higher proliferative activity, and fewer apoptotic cells in comparison with control cells. After 4-week of transplantation, both control cell- and Hsp27 overexpressed cell-transplanted groups showed significantly higher new bone formation in comparison with cell-free gel-transplantation group. Interestingly, the prolonged survival of transplanted osteoblastic cells by Hsp27 did not provide additional effect on bone healing. The transplanted cells in collagen gel survived for up to 4-week but did not differentiate into bone-forming osteoblasts. In conclusion, cell-containing collagen gel accelerated calvarial bone defect healing in comparison with cell-free collagen gel. However, prolonged survival of transplanted cells by Hsp27 overexpression did not provide additional effect. These results strongly indicate that cell transplantation-based bone regeneration cannot be explained only by the increment of osteogenic cells. Further studies are needed to elucidate the practical roles of transplanted cells that will potentiate successful bone regeneration. J. Cell. Physiol. 231: 1974-1982, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Regeneração Óssea/fisiologia , Diferenciação Celular/fisiologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Cicatrização/fisiologia , Animais , Sobrevivência Celular , Células Cultivadas , Colágeno/metabolismo , Masculino , Camundongos , Osteoblastos/citologia , Osteoblastos/transplante , Crânio/cirurgia
11.
J Cell Physiol ; 231(4): 926-33, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26381152

RESUMO

Type I collagen, a major extracellular component of the periodontal ligament (PDL), is post-translationally modified by a series of specific enzymes. Among the collagen-modifying enzymes, lysyl oxidase (LOX) is essential to initiate collagen cross-linking and lysyl hydroxylases (LHs) to regulate the cross-linking pathways that are important for tissue specific mechanical properties. The purpose of this study was to investigate the effects of mechanical loading on the expression of collagen-modifying enzymes and subsequent tissue changes in PDL. Primary human PDL cells were subjected to mechanical loading in a 3D collagen gel, and gene expression and collagen component were analyzed. Wistar rats were subjected to excessive occlusal loading with or without intra-peritoneal injection of a LOX inhibitor, ß-aminopropionitrile (BAPN). Upon mechanical loading, gene expression of LH2 and LOX was significantly elevated, while that of COL1A2 was not affected on hPDL-derived cells. The mechanical loading also elevated formation of collagen α-chain dimers in 3D culture. The numbers of LH2 and LOX positive cells in PDL were significantly increased in an excessive occlusal loading model. Notably, an increase of LH2-positive cells was observed only at the bone-side of PDL. Intensity of picrosirius red staining was increased by excessive occlusal loading, but significantly diminished by BAPN treatment. These results demonstrated that mechanical loading induced collagen maturation in PDL by up-regulating collagen-modifying enzymes and subsequent collagen cross-linking which are important for PDL tissue maintenance. J. Cell. Physiol. 231: 926-933, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Colágeno/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Ligamento Periodontal/fisiologia , Animais , Células Cultivadas , Humanos , Imuno-Histoquímica , Masculino , Ligamento Periodontal/citologia , Ligamento Periodontal/enzimologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Ratos Wistar , Estresse Mecânico , Suporte de Carga
12.
Implant Dent ; 25(2): 204-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26695704

RESUMO

PURPOSE: To investigate the relationship between stress distributions and peri-implant bone reactions around maxillary implants that support cantilevers in supraocclusal contact. MATERIALS AND METHODS: After molar extraction, 16 Wistar rats received a titanium implant unilaterally. After healing, 8 rats (control group) were killed and the others received implant-supported cantilever superstructures in supraocclusion (loaded group). After 5 days, they were killed. The maxillae of all rats were scanned by microcomputed tomography (µ-CT). Based on the µ-CT images, bone volumes were measured. For the loaded group, 3D finite element models were created and analyzed under 20-N vertical and 5-N lateral forces, successively. After µ-CT scanning, sections were prepared and observed histologically. RESULTS: When compared with the controls, the bone volume tended to decrease in the loaded group, but the difference was not statistically significant. On average, marginal bone resorption and stresses tended to be higher in 2 rats that occluded on the cantilever arm than in the others, which occluded right on the implant, nevertheless, calculated stress did not surpass the maximum elastic stress (yielding strength) of rat bone. However, at the implant-bone interface of these samples, partial bone resorption surrounded by signs of active resorption was histologically found. CONCLUSION: These findings suggest that in this occlusally loaded rat model, the stress distributions correlated to some extent with bone volume and morphological changes observed on µ-CT images and histological sections.


Assuntos
Interface Osso-Implante/fisiologia , Implantação Dentária Endóssea , Implantes Dentários , Animais , Interface Osso-Implante/diagnóstico por imagem , Implantação Dentária Endóssea/efeitos adversos , Análise do Estresse Dentário , Masculino , Ratos , Ratos Wistar , Microtomografia por Raio-X
13.
J Oral Maxillofac Surg ; 72(4): 694.e1-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24480775

RESUMO

PURPOSE: Clinically, bone marrow stromal cells (BMCs) are the most common source of osteoprogenitor cells. Its harvest process, however, is invasive to patients. Previous reports have shown the potential advantages of using periosteum-derived cells (PDCs) as a source of cell-based transplant therapy. The objective of our study was to characterize the osteoblastic differentiation and mineralization ability of PDCs versus BMCs and osteoblasts (OBs). MATERIALS AND METHODS: BMCs, OBs, and PDCs were isolated from 4-week-old male Wistar rats. To characterize the differentiation ability of the cells, MTS assay, alkaline phosphatase (ALP) activity staining, picrosirius red staining, and alizarin red staining were performed. Immunohistochemistry was performed on paraffin sections of calvarial periosteum to determine the presence of mesenchymal stem cells. RESULTS: PDCs showed the greatest proliferation rate compared with BMCs and OBs. Matured collagenous matrix formation was observed in PDCs and BMCs. ALP-positive cells and in vitro mineralization were evident in all cell types analyzed; however, that of PDCs was not comparable to that of the OBs and BMCs. Immunohistochemistry revealed the presence of STRO-1-and CD105-positive cells in the cambium layer of the periosteum. CONCLUSIONS: PDCs have remarkable proliferative ability, but contain only a small population of osteogenic cells compared with BMCs and OBs. Although cell activity can be affected by various factors, such as age, culture condition, additives, and so forth, PDCs are likely not the source of OBs, although they might provide matrices that indirectly aid in bone formation.


Assuntos
Células da Medula Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Osteoblastos/fisiologia , Periósteo/citologia , Crânio/citologia , Fosfatase Alcalina/análise , Animais , Antraquinonas , Antígenos CD/análise , Antígenos de Superfície/análise , Compostos Azo , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Proliferação de Células , Colágeno/biossíntese , Corantes , Matriz Extracelular/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Osteogênese/fisiologia , Ratos , Ratos Wistar , Receptores de Superfície Celular/análise
14.
Geroscience ; 46(6): 5995-6007, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38526843

RESUMO

Age-related deterioration of condylar cartilage is an etiological factor in temporomandibular joint-osteoarthritis (TMJ-OA). However, its underlying mechanism remains unknown. Therefore, we examined age-related changes and the relationship between mTOR signaling and primary cilia in condylar cartilage to determine the intrinsic mechanisms of age-related TMJ-OA. Age-related morphological changes were analyzed using micro-computed tomography and safranin O-stained histological samples of the mandibular condyle of C57BL/6J mice (up to 78 weeks old). Immunohistochemistry was used to assess the activity of mTOR signaling, primary cilia frequency, and Golgi size of condylar chondrocytes. Four-week-old mice receiving an 11-week series of intraperitoneal injections of rapamycin, a potent mTOR signaling inhibitor, were used for the histological evaluation of the condylar cartilage. The condylar cartilage demonstrated an age-related reduction in cartilage area, including chondrocyte size, cell density, and cell size distribution. The Golgi size, primary cilia frequency, and mTOR signaling also decreased with age. Rapamycin injections resulted in both diminished cartilage area and cell size, resembling the phenotypes observed in aged mice. Rapamycin-injected mice also exhibited a smaller Golgi size and lower primary cilia frequency in condylar cartilage. We demonstrated that a loss of primary cilia due to a decline in mTOR signaling was correlated with age-related deteriorations in condylar cartilage. Our findings provide new insights into the tissue homeostasis of condylar cartilage, contributing to understanding the etiology of age-related TMJ-OA.


Assuntos
Cartilagem Articular , Condrócitos , Cílios , Côndilo Mandibular , Camundongos Endogâmicos C57BL , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR , Microtomografia por Raio-X , Animais , Serina-Treonina Quinases TOR/metabolismo , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/patologia , Côndilo Mandibular/metabolismo , Côndilo Mandibular/patologia , Côndilo Mandibular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Sirolimo/farmacologia , Camundongos , Osteoartrite/metabolismo , Osteoartrite/patologia , Masculino , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Imuno-Histoquímica , Modelos Animais de Doenças , Transtornos da Articulação Temporomandibular/metabolismo , Transtornos da Articulação Temporomandibular/patologia
15.
Sci Rep ; 14(1): 354, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172274

RESUMO

A comprehensive understanding of the extracellular matrix (ECM) is essential for developing biomimetic ECM scaffolds for tissue regeneration. As the periodontal ligament cell (PDLC)-derived ECM has shown potential for periodontal tissue regeneration, it is vital to gain a deeper understanding of its comprehensive profile. Although the PDLC-derived ECM exhibits extracellular environment similar to that of periodontal ligament (PDL) tissue, details of its molecular composition are lacking. Thus, using a multiomics approach, we systematically analyzed cultured mouse PDLC-derived ECM and compared it to mouse PDL tissue as a reference. Proteomic analysis revealed that, compared to PDL tissue, the cultured PDLC-derived ECM had a lower proportion of fibrillar collagens with increased levels of glycoprotein, corresponding to an immature ECM status. The gene expression signature was maintained in cultured PDLCs and was similar to that in cells from PDL tissues, with additional characteristics representative of naturally occurring progenitor cells. A combination of proteomic and transcriptomic analyses revealed that the cultured mouse PDLC-derived ECM has multiple advantages in tissue regeneration, providing an extracellular environment that closely mimics the environment in the native PDL tissue. These findings provide valuable insights for understanding PDLC-derived ECM and should contribute to the development of biomimetic ECM scaffolds for reliable periodontal tissue regeneration.


Assuntos
Multiômica , Ligamento Periodontal , Camundongos , Animais , Ligamento Periodontal/metabolismo , Proteômica , Matriz Extracelular/metabolismo , Células Cultivadas
16.
Front Physiol ; 13: 899699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669581

RESUMO

The periodontal ligament (PDL) is a specialized connective tissue that provides structural support to the tooth and is crucial for oral functions. The mechanical properties of the PDL are mainly derived from the tissue-specific composition and structural characteristics of the extracellular matrix (ECM). The ECM also plays key roles in determining cell fate in the cellular microenvironment thus crucial in the PDL tissue homeostasis. In the present study, we determined the comprehensive ECM profile of mouse molar PDL using laser microdissection and mass spectrometry-based proteomic analysis with ECM-oriented data curation. Additionally, we evaluated changes in the ECM proteome under mechanical loading using a mouse orthodontic tooth movement (OTM) model and analyzed potential regulatory networks using a bioinformatics approach. Proteomic changes were evaluated in reference to the novel second harmonic generation (SHG)-based fiber characterization. Our ECM-oriented proteomics approach succeeded in illustrating the comprehensive ECM profile of the mouse molar PDL. We revealed the presence of type II collagen in PDL, possibly associated with the load-bearing function upon occlusal force. Mechanical loading induced unique architectural changes in collagen fibers along with dynamic compositional changes in the matrisome profile, particularly involving ECM glycoproteins and matrisome-associated proteins. We identified several unique matrisome proteins which responded to the different modes of mechanical loading in PDL. Notably, the proportion of type VI collagen significantly increased at the mesial side, contributing to collagen fibrogenesis. On the other hand, type XII collagen increased at the PDL-cementum boundary of the distal side. Furthermore, a multifaceted bioinformatics approach illustrated the potential molecular cues, including PDGF signaling, that maintain ECM homeostasis under mechanical loading. Our findings provide fundamental insights into the molecular network underlying ECM homeostasis in PDL, which is vital for clinical diagnosis and development of biomimetic tissue-regeneration strategies.

17.
Sci Signal ; 14(665)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436499

RESUMO

Cranial neural crest cells (CNCCs) are a population of multipotent stem cells that give rise to craniofacial bone and cartilage during development. Bone morphogenetic protein (BMP) signaling and autophagy have been individually implicated in stem cell homeostasis. Mutations that cause constitutive activation of the BMP type I receptor ACVR1 cause the congenital disorder fibrodysplasia ossificans progressiva (FOP), which is characterized by ectopic cartilage and bone in connective tissues in the trunk and sometimes includes ectopic craniofacial bones. Here, we showed that enhanced BMP signaling through the constitutively activated ACVR1 (ca-ACVR1) in CNCCs in mice induced ectopic cartilage formation in the craniofacial region through an autophagy-dependent mechanism. Enhanced BMP signaling suppressed autophagy by activating mTORC1, thus blocking the autophagic degradation of ß-catenin, which, in turn, caused CNCCs to adopt a chondrogenic identity. Transient blockade of mTORC1, reactivation of autophagy, or suppression of Wnt-ß-catenin signaling reduced ectopic cartilages in ca-Acvr1 mutants. Our results suggest that BMP signaling and autophagy coordinately regulate ß-catenin activity to direct the fate of CNCCs during craniofacial development. These findings may also explain why some patients with FOP develop ectopic bones through endochondral ossification in craniofacial regions.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Condrogênese , Crista Neural/metabolismo , Transdução de Sinais , Crânio/metabolismo , beta Catenina/metabolismo , Receptores de Ativinas Tipo I/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Miosite Ossificante , Crista Neural/fisiologia , Osteogênese , Proteólise , Crânio/fisiologia
18.
J Orthop Surg Res ; 13(1): 318, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545382

RESUMO

BACKGROUND: Postmenopausal osteoporosis develops due to a deficiency of estrogen that causes a decrease in bone mass and changes in the macro- and micro-architectural structure of the bone, leading to the loss of mechanical strength and an increased risk of fracture. Although the assessment of bone mineral density (BMD) has been widely used as a gold standard for diagnostic screening of bone fracture risks, it accounts for only a part of the variation in bone fragility; thus, it is necessary to consider other determinants of bone strength. Therefore, we aimed to comprehensively evaluate the architectural changes of the bone that influence bone fracture strength, together with the different sensitivities of cortical and trabecular bone in response to ovariectomy (OVX). METHODS: Bone morphology parameters were separately analyzed both in cortical and in trabecular bones, at distal-metaphysis, and mid-diaphysis of OVX rat femurs. Three-point bending test was performed at mid-diaphysis of the femurs. Correlation of OVX-induced changes of morphological parameters with breaking force was analyzed using Pearson's correlation coefficient. RESULTS: OVX resulted in a decline in the bone volume of distal-metaphysis trabecular bone, but an increase in distal-metaphysis and mid-diaphysis cortical bone volume. Tissue mineral density (TMD) remained unchanged in both the trabecular and cortical bone of the distal metaphysis but decreased in cortical bone of the mid-diaphysis. The OVX significantly increased the breaking force at mid-diaphysis of the femurs. CONCLUSIONS: OVX decreased the trabecular bone volume of the distal-metaphysis and increased the cortical bone volume of the distal-metaphysis and mid-diaphysis. Despite the reduction in TMD and increased cortical porosity, bone fracture strength increased in the mid-diaphysis after OVX. These results indicate that analyzing a single factor, i.e., BMD, is not sufficient to predict the absolute fracture risk of the bone, as OVX-induced bone response vary, depending on the bone type and location. Our results strongly support the necessity of analyzing bone micro-architecture and site specificity to clarify the true etiology of osteoporosis in a clinical setting.


Assuntos
Densidade Óssea/fisiologia , Fraturas do Colo Femoral/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Ovariectomia/efeitos adversos , Animais , Feminino , Fraturas do Colo Femoral/fisiopatologia , Fêmur/lesões , Fraturas de Estresse/diagnóstico por imagem , Fraturas de Estresse/fisiopatologia , Ovariectomia/tendências , Ratos , Ratos Wistar , Microtomografia por Raio-X/métodos , Microtomografia por Raio-X/tendências
19.
PLoS One ; 13(9): e0204306, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30252876

RESUMO

Fibrillar type I collagen, the predominant organic component in bone, is stabilized by lysyl oxidase (LOX)-initiated covalent intermolecular cross-linking, an important determinant of bone quality. However, the impact of collagen cross-linking on the activity of bone cells and subsequent tissue remodeling is not well understood. In this study, we investigated the effect of collagen cross-linking on bone cellular activities employing a loss-of-function approach, using a potent LOX inhibitor, ß-aminopropionitrile (BAPN). Osteoblastic cells (MC3T3-E1) were cultured for 2 weeks in the presence of 0-2 mM BAPN to obtain low cross-linked collagen matrices. The addition of BAPN to the cultures diminished collagen cross-links in a dose-dependent manner and, at 1 mM level, none of the major cross-links were detected without affecting collagen production. After the removal of cellular components from these cultures, MC3T3-E1, osteoclasts (RAW264.7), or mouse primary bone marrow-derived stromal cells (BMSCs) were seeded. MC3T3-E1 cells grown on low cross-link matrices showed increased alkaline phosphatase (ALP) activity. The number of multinucleate tartrate-resistant acid phosphatase (TRAP)-positive cells increased in RAW264.7 cells. Initial adhesion, proliferation, and ALP activity of BMSCs also increased. In the animal experiments, 4-week-old C57BL/6 mice were fed with BAPN-containing diet for 8 weeks. At this point, biochemical analysis of bone demonstrated that collagen cross-links decreased without affecting collagen content. Then, the diet was changed to a control diet to minimize the direct effect of BAPN. At 2 and 4 weeks after the change, histological samples were prepared. Histological examination of femur samples at 4 weeks showed a significant increase in the number of bone surface osteoblasts, while the bone volume and surface osteoclast numbers were not significantly affected. These results clearly demonstrated that the extent of collagen cross-linking of bone matrix affected the differentiation of bone cells, underscoring the importance of collagen cross-linking in the regulation of cell behaviors and tissue remodeling in bone. Characterization of collagen cross-linking in bone may be beneficial to obtain insight into not only bone mechanical property, but also bone cellular activities.


Assuntos
Diferenciação Celular , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Osteoblastos/citologia , Osteoclastos/citologia , Células 3T3 , Aminopropionitrilo/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Matriz Extracelular/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Células RAW 264.7
20.
J Bone Miner Res ; 30(11): 2028-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25919282

RESUMO

Congenital orofacial abnormalities are clinically seen in human syndromes with SHP2 germline mutations such as LEOPARD and Noonan syndrome. Recent studies demonstrate that SHP2-deficiency leads to skeletal abnormalities including scoliosis and cartilaginous benign tumor metachondromatosis, suggesting that growth plate cartilage is a key tissue regulated by SHP2. The role and cellular mechanism of SHP2 in the orofacial cartilage, however, remains unknown. Here, we investigated the postnatal craniofacial development by inducible disruption of Shp2 in chondrocytes. Shp2 conditional knockout (cKO) mice displayed severe deformity of the mandibular condyle accompanied by disorganized, expanded cartilage in the trabecular bone region, enhanced type X collagen, and reduced Erk production. Interestingly, the length of primary cilia, an antenna like organelle sensing environmental signaling, was significantly shortened, and the number of primary cilia was reduced in the cKO mice. The expression levels of intraflagellar transports (IFTs), essential molecules in the assembly and function of primary cilia, were significantly decreased. Taken together, lack of Shp2 in orofacial cartilage led to severe defects of ciliogenesis through IFT reduction, resulting in mandibular condyle malformation and cartilaginous expansion. Our study provides new insights into the molecular pathogenesis of SHP2-deficiency in cartilage and helps to understand orofacial and skeletal manifestations seen in patients with SHP2 mutations.


Assuntos
Condrócitos/patologia , Cílios/patologia , Face/patologia , Organogênese , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Cartilagem , Linhagem da Célula , Condrócitos/metabolismo , Mandíbula/anormalidades , Mandíbula/patologia , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA