Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 19(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997321

RESUMO

Blast concussions are a common injury sustained in military combat today. Inflammation due to microglial polarization can drive the development of visual defects following blast injuries. In this study, we assessed whether anti-inflammatory factors released by the mesenchymal stem cells derived from adipose tissue (adipose stem cells, ASC) can limit retinal tissue damage and improve visual function in a mouse model of visual deficits following mild traumatic brain injury. We show that intravitreal injection of 1 µL of ASC concentrated conditioned medium from cells pre-stimulated with inflammatory cytokines (ASC-CCM) mitigates loss of visual acuity and contrast sensitivity four weeks post blast injury. Moreover, blast mice showed increased retinal expression of genes associated with microglial activation and inflammation by molecular analyses, retinal glial fibrillary acidic protein (GFAP) immunoreactivity, and increased loss of ganglion cells. Interestingly, blast mice that received ASC-CCM improved in all parameters above. In vitro, ASC-CCM not only suppressed microglial activation but also protected against Tumor necrosis alpha (TNFα) induced endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrate TSG-6 is highly expressed in ASC-CCM from cells pre-stimulated with TNFα and IFNγ but not from unstimulated cells. Our findings suggest that ASC-CCM mitigates visual deficits of the blast injury through their anti-inflammatory properties on activated pro-inflammatory microglia and endothelial cells. A regenerative therapy for immediate delivery at the time of injury may provide a practical and cost-effective solution against the traumatic effects of blast injuries to the retina.


Assuntos
Anti-Inflamatórios/administração & dosagem , Traumatismos por Explosões/complicações , Concussão Encefálica/etiologia , Meios de Cultivo Condicionados/química , Células-Tronco Mesenquimais/metabolismo , Retinite/tratamento farmacológico , Transtornos da Visão/tratamento farmacológico , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Concussão Encefálica/complicações , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Injeções Intravítreas , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Retinite/etiologia , Transtornos da Visão/etiologia
2.
Tetrahedron Lett ; 56(23): 3441-3446, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26190869

RESUMO

Peptidoglycan (PG) is unique to bacteria, and thus, the enzymes responsible for its biosynthesis are promising antibacterial drug targets. The membrane-embedded enzymes in PG remain significant challenges in studying their mechanisms due to the fact that preparations of suitable enzymatic substrates require time-consuming biological transformations or chemical synthesis. Lipid I (prenyl diphosphoryl-MurNAc-pentapeptide) is an important PG biosynthesis intermediate to study the central enzymes, translocase I (MraY/MurX) and MurG. Lipid I isolated from nature contains the C50-or C55-prenyl unit that shows extremely poor water-solubility that renders studies of translocase I and MurG enzymes difficult. We have studied biological transformation of water soluble lipid I fluorescent probes using bacterial membrane fractions and purified MraY enzymes. In our investigation of the minimum structural requirements of the prenyl phosphates in MraY-catalyzed lipid I synthesis, we found that (2Z,6E)-farnesyl phosphate (C15-phosphate) can be recognized by E. coli MraY to generate the water-soluble lipid I fluorescent probes in high-yield. Under the optimized conditions, the same reaction was performed by using the purified MraY from Hydrogenivirga spp. to afford the lipid I analog with high-yield in a short reaction time.

3.
Science ; 381(6654): eadg9091, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440661

RESUMO

The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.


Assuntos
Antibacterianos , Bacteriólise , Bacteriófago phi X 174 , Proteínas de Escherichia coli , Escherichia coli , Proteínas Virais , Antibacterianos/metabolismo , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica
4.
J Am Chem Soc ; 133(49): 19634-7, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22087583

RESUMO

Celastrol, an important natural product and Hsp90 inhibitor with a wide range of biological and medical activities and broad use as a biological probe, acts by an as yet undetermined mode of action. It is known to undergo Michael additions with biological sulfur nucleophiles. Here it is demonstrated that nucleophiles add to the pharmacophore of celastrol in a remarkable stereospecific manner. Extensive characterization of the addition products has been obtained using NMR spectrometry, nuclear Overhauser effects, and density functional theory to determine facial selectivity and gain insight into the orbital interactions of the reactive centers. This stereospecificity of celastrol may be important to its protein target selectivity.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Triterpenos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Triterpenos Pentacíclicos , Teoria Quântica , Estereoisomerismo , Tripterygium/química , Triterpenos/farmacologia
5.
Stem Cell Res Ther ; 10(1): 318, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690344

RESUMO

BACKGROUND: Retinal inflammation affecting the neurovascular unit may play a role in the development of visual deficits following mild traumatic brain injury (mTBI). We have shown that concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) can limit retinal damage from blast injury and improve visual function. In this study, we addressed the hypothesis that TNFα-stimulated gene-6 (TSG-6), an anti-inflammatory protein released by mesenchymal cells, mediates the observed therapeutic potential of ASCs via neurovascular modulation. METHODS: About 12-week-old C57Bl/6 mice were subjected to 50-psi air pulse on the left side of the head overlying the forebrain resulting in an mTBI. Age-matched sham blast mice served as control. About 1 µl of ASC-CCM (siControl-ASC-CCM) or TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) was delivered intravitreally into both eyes. One month following injection, the ocular function was assessed followed by molecular and immunohistological analysis. In vitro, mouse microglial cells were used to evaluate the anti-inflammatory effect of ASC-CCM. Efficacy of ASC-CCM in normalizing retinal vascular permeability was assessed using trans-endothelial resistance (TER) and VE-cadherin expression in the presence of TNFα (1 ng/ml). RESULTS: We show that intravitreal injection of ASC-CCM (siControl-ASC-CCM) but not the TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) mitigates the loss of visual acuity and contrast sensitivity, retinal expression of genes associated with microglial and endothelial activation, and retinal GFAP immunoreactivity at 4 weeks after blast injury. In vitro, siControl-ASC-CCM but not the siTSG-6-ASC-CCM not only suppressed microglial activation and STAT3 phosphorylation but also protected against TNFα-induced endothelial permeability as measured by transendothelial electrical resistance and decreased STAT3 phosphorylation. CONCLUSIONS: Our findings suggest that ASCs respond to an inflammatory milieu by secreting higher levels of TSG-6 that mediates the resolution of the inflammatory cascade on multiple cell types and correlates with the therapeutic potency of the ASC-CCM. These results expand our understanding of innate mesenchymal cell function and confirm the importance of considering methods to increase the production of key analytes such as TSG-6 if mesenchymal stem cell secretome-derived biologics are to be developed as a treatment solution against the traumatic effects of blast injuries and other neurovascular inflammatory conditions of the retina.


Assuntos
Tecido Adiposo/citologia , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/terapia , Moléculas de Adesão Celular/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Animais , Forma Celular/efeitos dos fármacos , Citocinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/patologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/toxicidade
6.
ACS Omega ; 3(2): 1726-1739, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29503973

RESUMO

The spectrum of antibacterial activity for the nucleoside antibiotic FR-900493 (1) can be extended by chemical modifications. We have generated a small focused library based on the structure of 1 and identified UT-17415 (9), UT-17455 (10), UT-17460 (11), and UT-17465 (12), which exhibit anti-Clostridium difficile growth inhibitory activity. These analogues also inhibit the outgrowth of C. difficile spores at 2× minimum inhibitory concentration. One of these analogues, 11, relative to 1 exhibits over 180-fold and 15-fold greater activity against the enzymes, phospho-MurNAc-pentapeptide translocase (MraY) and polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA), respectively. The phosphotransferase inhibitor 11 displays antimicrobial activity against several tested bacteria including Bacillus subtilis, Clostridium spp., and Mycobacterium smegmatis, but no growth inhibitory activity is observed against the other Gram-positive and Gram-negative bacteria. The selectivity index (Vero cell cytotoxicity/C. difficileantimicrobial activity) of 11 is approximately 17, and 11 does not induce hemolysis even at a 100 µM concentration.

7.
ACS Chem Biol ; 7(5): 928-37, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22380712

RESUMO

The natural product celastrol (1) possesses numerous beneficial therapeutic properties and affects numerous cellular pathways. The mechanism of action and cellular target(s) of celastrol, however, remain unresolved. While a number of studies have proposed that the activity of celastrol is mediated through reaction with cysteine residues, these observations have been based on studies with specific proteins or by in vitro analysis of a small fraction of the proteome. In this study, we have investigated the spatial and structural requirements of celastrol for the design of suitable affinity probes to identify cellular binding partners of celastrol. Although celastrol has several potential sites for modification, some of these were not synthetically amenable or yielded unstable analogues. Conversion of the carboxylic acid functionality to amides and long-chain analogues, however, yielded bioactive compounds that induced the heat shock response (HSR) and antioxidant response and inhibited Hsp90 activity. This led to the synthesis of biotinylated celastrols (23 and 24) that were used as affinity reagents in extracts of human Panc-1 cells to identify Annexin II, eEF1A, and ß-tubulin as potential targets of celastrol.


Assuntos
Celastraceae/química , Resposta ao Choque Térmico/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Antioxidantes/metabolismo , Biotinilação , Linhagem Celular , Linhagem Celular Tumoral , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Triterpenos Pentacíclicos
8.
Mol Biol Cell ; 19(3): 1104-12, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18199679

RESUMO

Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product.


Assuntos
Antioxidantes/metabolismo , Produtos Biológicos/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Compostos de Sulfidrila/farmacologia , Transcrição Gênica/efeitos dos fármacos , Triterpenos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Produtos Biológicos/química , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Biológicos , Oxidantes/farmacologia , Triterpenos Pentacíclicos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA