Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Ecol ; 33(6): e17285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288563

RESUMO

Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.


Assuntos
Genética Populacional , Repetições de Microssatélites , Animais , Teorema de Bayes , Repetições de Microssatélites/genética , Reprodução/genética , Polinização/genética , Fluxo Gênico , Variação Genética/genética
2.
Mol Ecol ; 32(5): 1211-1228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484548

RESUMO

Most seed plants produce both pollen and ovules. In principle, pollen export could interfere with pollen import through self-pollination, resulting in ovule usurpation and reduced fruit set. Evidence for such interference exists under experimental settings but its importance under natural conditions is unknown. To test for sexual interference in nature, it is necessary to study together mating system, through paternity analyses, and fruit set, the proportion of flowers giving seeds or fruits. We developed a new model combining both processes, using chestnut (Castanea) as case study. We carried out a paternity analysis in an intensively studied plot of 273 trees belonging to three interfertile chestnut species and including a range of individuals with more or less functional stamens, resulting in a large data set of 1924 mating events. We then measured fruit set on 216 of these trees. Fruit set of male-fertile trees was much lower than that of male-sterile trees. Our process-based model shows that pollen is not limiting in the study site and hence cannot account for reduced fruit set. It also indicates that self-pollination is high (74%) but selfing rate is low (4%). Self-pollen is less competitive than cross-pollen, reducing sexual interference, but not sufficiently, as many ovules end up being self-fertilized, 95% of which abort before fruit formation, resulting in the loss of 46% of the fruit crop. These results suggest that the main cause of reduced reproductive potential in chestnut is sexual interference by self-pollen, raising questions on its evolutionary origins.


Assuntos
Polinização , Reprodução , Humanos , Sementes/genética , Frutas/genética , Pólen/genética , Árvores , Flores/genética
3.
J Math Biol ; 87(3): 47, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632534

RESUMO

The environmental factors affecting plant reproduction and effective dispersal, in particular biotic interactions, have a strong influence on plant expansion dynamics, but their demographic and genetic consequences remain an understudied body of theory. Here, we use a mathematical model in a one-dimensional space and on a single reproductive period to describe the joint effects of predispersal seed insect predators foraging strategy and plant reproduction strategy (masting) on the spatio-temporal dynamics of seed sources diversity in the colonisation front of expanding plant populations. We show that certain foraging strategies can result in a higher seed predation rate at the colonisation front compared to the core of the population, leading to an Allee effect. This effect promotes the contribution of seed sources from the core to the colonisation front, with long-distance dispersal further increasing this contribution. As a consequence, our study reveals a novel impact of the predispersal seed predation-induced Allee effect, which mitigates the erosion of diversity in expanding populations. We use rearrangement inequalities to show that masting has a buffering role: it mitigates this seed predation-induced Allee effect. This study shows that predispersal seed predation, plant reproductive strategies and seed dispersal patterns can be intermingled drivers of the diversity of seed sources in expanding plant populations, and opens new perspectives concerning the analysis of more complex models such as integro-difference or reaction-diffusion equations.


Assuntos
Comportamento Predatório , Dispersão de Sementes , Animais , Sementes , Difusão
4.
Mol Ecol ; 30(7): 1721-1735, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33559274

RESUMO

Sexual dimorphism in plants may emerge as a result of sex-specific selection on traits enhancing access to nutritive resources and/or to sexual partners. Here we investigated sex-specific differences in selection of sexually dimorphic traits and in the spatial distribution of effective fecundity (our fitness proxy) in a highly dimorphic dioecious wind-pollinated shrub, Leucadendron rubrum. In particular, we tested for the effect of density on male and female effective fecundity. We used spatial and genotypic data of parent and offspring cohorts to jointly estimate individual male and female effective fecundity on the one hand and pollen and seed dispersal kernels on the other hand. This methodology was adapted to the case of dioecious species. Explicitly modelling dispersal avoids the confounding effects of heterogeneous spatial distribution of mates and sampled seedlings on the estimation of effective fecundity. We also estimated selection gradients on plant traits while modelling sex-specific spatial autocorrelation in fecundity. Males exhibited spatial autocorrelation in effective fecundity at a smaller scale than females. A higher local density of plants was associated with lower effective fecundity in males but was not related to female effective fecundity. These results suggest sex-specific sensitivities to environmental heterogeneity in L. rubrum. Despite these sexual differences, we found directional selection for wider canopies and smaller leaves in both sexes, and no sexually antagonistic selection on strongly dimorphic traits in L. rubrum. Many empirical studies in animals similarly failed to detect sexually antagonistic selection in species expressing strong sexual dimorphism, and we discuss reasons explaining this common pattern.


Assuntos
Proteaceae , Caracteres Sexuais , Animais , Feminino , Fertilidade/genética , Masculino , Fenótipo , Vento
5.
Heredity (Edinb) ; 126(3): 491-504, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33230286

RESUMO

Understanding the ecological and evolutionary processes occurring during species range shifts is important in the current context of global change. Here, we investigate the interplay between recent expansion, gene flow and genetic drift, and their consequences for genetic diversity and structure at landscape and local scales in European beech (Fagus sylvatica L.) On Mont Ventoux, South-Eastern France, we located beech forest refugia at the time of the most recent population minimum, ~150 years ago, and sampled 71 populations (2042 trees) in both refugia and expanding populations over an area of 15,000 ha. We inferred patterns of gene flow and genetic structure using 12 microsatellite markers. We identified six plots as originating from planting, rather than natural establishment, mostly from local genetic material. Comparing genetic diversity and structure in refugia versus recent populations did not support the existence of founder effects: heterozygosity (He = 0.667) and allelic richness (Ar = 4.298) were similar, and FST was low (0.031 overall). Still, significant spatial evidence of colonization was detected, with He increasing along the expansion front, while genetic differentiation from the entire pool (ßWT) decreased. Isolation by distance was found in refugia but not in recently expanding populations. Our study indicates that beech capacities for colonization and gene flow were sufficient to preserve genetic diversity despite recent forest contraction and expansion. Because beech has long distance pollen and seed dispersal, these results illustrate a 'best case scenario' for the maintenance of high genetic diversity and adaptive potential under climate-change-related range change.


Assuntos
Fagus , Fagus/genética , Efeito Fundador , Variação Genética , Genética Populacional , Repetições de Microssatélites
6.
New Phytol ; 227(2): 641-653, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32167572

RESUMO

In species with long-distance dispersal capacities and inhabiting a large ecological niche, local selection and gene flow are expected to be major evolutionary forces affecting the genetic adaptation of natural populations. Yet, in species such as trees, evidence of microgeographic adaptation and the quantitative assessment of the impact of gene flow on adaptive genetic variation are still limited. Here, we used extensive genetic and phenotypic data from European beech seedlings collected along an elevation gradient, and grown in a common garden, to study the signature of selection on the divergence of eleven potentially adaptive traits, and to assess the role of gene flow in resupplying adaptive genetic variation. We found a significant signal of adaptive differentiation among plots separated by < 1 km, with selection acting on growth and phenological traits. Consistent with theoretical expectations, our results suggest that pollen dispersal contributes to increase genetic diversity for these locally differentiated traits. Our results thus highlight that local selection is an important evolutionary force in natural tree populations and suggest that management interventions to facilitate movement of gametes along short ecological gradients would boost genetic diversity of individual tree populations, and enhance their adaptive potential to rapidly changing environments.


Assuntos
Fagus , Árvores , Aclimatação , Adaptação Fisiológica/genética , Variação Genética , Pólen/genética , Árvores/genética
7.
Mol Ecol ; 27(15): 3131-3145, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29924889

RESUMO

Interindividual variation in fecundities has major consequences on population evolutionary potential, through genetic drift and selection. Using two spatially explicit mating models that analyse the genotypes of seeds and seedlings, we investigated the variation of male and female fecundities within and among three European beech (Fagus sylvatica) stands situated along an altitudinal gradient. Female and male individual fecundity distributions were both skewed in this monoecious species, and we found a higher variance in female as compared to male fecundities. Both female and male fecundities increased with tree size and decreased with density and competition in the neighbourhood, the details of these effects suggesting sex-specific strategies to deal with the impact of limited resource on fecundity. The studied populations were functionally male-biased. Among-individual variations in functional gender were not driven by tree size but by density and competition in the neighbourhood. Femaleness decreased under limited resource availability, an expected consequence of the higher cost of female reproduction. Considering the variation of gene flow and genetic drift across elevation, our results suggest that the adaptive potential could be enhanced by low genetic drift at low elevation, and by high pollen-mediated gene flow at high elevation. Finally, this study predicts a more efficient response to selection for traits related to male vs. female fitness, for a given selection intensity.


Assuntos
Fagus/fisiologia , Fluxo Gênico/genética , Árvores/fisiologia , Ecologia , Fagus/genética , Genótipo , Repetições de Microssatélites/genética , Plântula/genética , Plântula/fisiologia , Sementes/genética , Sementes/fisiologia , Árvores/genética
8.
Proc Natl Acad Sci U S A ; 109(23): 8828-33, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22611189

RESUMO

Most mathematical studies on expanding populations have focused on the rate of range expansion of a population. However, the genetic consequences of population expansion remain an understudied body of theory. Describing an expanding population as a traveling wave solution derived from a classical reaction-diffusion model, we analyze the spatio-temporal evolution of its genetic structure. We show that the presence of an Allee effect (i.e., a lower per capita growth rate at low densities) drastically modifies genetic diversity, both in the colonization front and behind it. With an Allee effect (i.e., pushed colonization waves), all of the genetic diversity of a population is conserved in the colonization front. In the absence of an Allee effect (i.e., pulled waves), only the furthest forward members of the initial population persist in the colonization front, indicating a strong erosion of the diversity in this population. These results counteract commonly held notions that the Allee effect generally has adverse consequences. Our study contributes new knowledge to the surfing phenomenon in continuous models without random genetic drift. It also provides insight into the dynamics of traveling wave solutions and leads to a new interpretation of the mathematical notions of pulled and pushed waves.


Assuntos
Demografia , Variação Genética , Genética Populacional , Modelos Biológicos , Dinâmica Populacional , Simulação por Computador , Densidade Demográfica
9.
Mol Ecol ; 23(17): 4331-43, 2014 09.
Artigo em Inglês | MEDLINE | ID: mdl-24762107

RESUMO

Reproductive strategies of closely related species distributed along successional gradients should differ as a consequence of the trade-off between competition and colonization abilities. We compared male reproductive strategies of Quercus robur and Q. petraea, two partly interfertile European oak species with different successional status. In the studied even-aged stand, trees of the late-successional species (Q. petraea) grew faster and suffered less from intertree competition than trees of the early-successional species (Q. robur). A large-scale paternity study and a spatially explicit individual-based mating model were used to estimate parameters of pollen production and dispersal as well as sexual barriers between species. Male fecundity was found to be dependent both on a tree's circumference and on its environment, particularly so for Q. petraea. Pollen dispersal was greater and more isotropic in Q. robur than in Q. petraea. Premating barriers to hybridization were strong in both species, but more so in Q. petraea than in Q. robur. Hence, predictions based on the competition-colonization trade-off are well supported, whereas the sexual barriers themselves seem to be shaped by colonization dynamics.


Assuntos
Quercus/crescimento & desenvolvimento , Quercus/genética , Ecossistema , Fertilidade , França , Genótipo , Hibridização Genética , Modelos Genéticos , Fenótipo , Pólen , Reprodução/genética
10.
Stat Appl Genet Mol Biol ; 12(1): 17-37, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23446870

RESUMO

Functional statistics are commonly used to characterize spatial patterns in general and spatial genetic structures in population genetics in particular. Such functional statistics also enable the estimation of parameters of spatially explicit (and genetic) models. Recently, Approximate Bayesian Computation (ABC) has been proposed to estimate model parameters from functional statistics. However, applying ABC with functional statistics may be cumbersome because of the high dimension of the set of statistics and the dependences among them. To tackle this difficulty, we propose an ABC procedure which relies on an optimized weighted distance between observed and simulated functional statistics. We applied this procedure to a simple step model, a spatial point process characterized by its pair correlation function and a pollen dispersal model characterized by genetic differentiation as a function of distance. These applications showed how the optimized weighted distance improved estimation accuracy. In the discussion, we consider the application of the proposed ABC procedure to functional statistics characterizing non-spatial processes.


Assuntos
Simulação por Computador , Modelos Genéticos , Modelos Estatísticos , Algoritmos , Teorema de Bayes , Genética Populacional , Dispersão Vegetal , Distribuição de Poisson , Pólen/genética , Sorbus/genética
11.
Mol Ecol ; 22(19): 5001-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23952125

RESUMO

Studies addressing the variation of mating system between plant populations rarely account for the variability of these parameters between individuals within populations, although this variability is often non-negligible. Here, we propose a new direct method based on paternity analyses (Mixed Effect Mating Model) to estimate individual migration (mi ) and selfing rates (si ) together with the pollen dispersal kernel. Using this method and the KINDIST approach, we investigated the variation of mating system parameters within and between three populations of Fagus sylvatica along an elevational gradient. Among the mother trees, si varied from 0% to 48%, mi varied from 12% to 86% and the effective number of pollen donors (Nepi ) varied from 2 to 364. The mating patterns differed along the gradient, the top population showing higher m and lower s, and a trend to higher Nep than the bottom populations. The phenological lag shaped long-distance pollen flow both within population (by increasing mi at mother-tree level) and between populations (by increasing m at high elevation). Rather than the mate density, the canopy density was detected as a major mating system determinant within population; it acted as a barrier to pollen flow, decreasing the proportion of long-distance pollen flow and increasing si . Overall, the effects of ecological factors on mating system were not the same within vs. between populations across the gradient, and these factors also differed from those traditionally found to shape variation at range-wide scale, highlighting the interest of multiscale approaches.


Assuntos
Altitude , Fagus/genética , Genética Populacional , França , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Polinização/genética , Densidade Demográfica , Árvores/genética
12.
Mol Ecol ; 22(2): 423-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23173566

RESUMO

Natural hybridization is attracting much interest in modern speciation and conservation biology studies, but the underlying mechanisms remain poorly understood. In particular, it is unclear why environmental changes often increase hybridization rates. To study this question, we surveyed mating events in a mixed oak stand and developed a spatially explicit individual-based hybridization model. This model, where hybridization is frequency-dependent, pollen is nonlimiting and which allows immigrant pollen to compete with local pollen, takes into account species-specific pollen dispersal and sexual barriers to hybridization. The consequences of pollen limitation on hybridization were studied using another simple model. The results indicate that environmental changes could increase hybridization rates through two distinct mechanisms. First, by disrupting the spatial organization of communities, they should decrease the proportion of conspecific pollen available for mating, thus increasing hybridization rates. Second, by decreasing the density of conspecifics, they should increase pollen limitation and thus hybridization rates, as a consequence of chance pollination predominating over deterministic pollen competition. Altogether, our results point to a need for considering hybridization events at the appropriate level of organization and provide new insights into why hybridization rates generally increase in disturbed environments.


Assuntos
Meio Ambiente , Hibridização Genética , Polinização/genética , Quercus/genética , DNA de Plantas/genética , Genótipo , Modelos Genéticos , Peptídeos Cíclicos , Pólen/genética
13.
Ecol Lett ; 15(4): 378-92, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22372546

RESUMO

Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Florestas , Fluxo Gênico , Árvores/genética , Evolução Biológica , Variação Genética , Endogamia , Modelos Genéticos , Pólen , Dispersão de Sementes , Seleção Genética , Árvores/fisiologia
14.
Genetica ; 140(1-3): 39-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22638826

RESUMO

Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5 % level) in 92 % of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.


Assuntos
Algoritmos , Carga Genética , Variação Genética , Modelos Genéticos , Simulação por Computador , Aptidão Genética , Genética Populacional , Endogamia , Densidade Demográfica , Crescimento Demográfico
15.
Mol Ecol ; 20(9): 1997-2010, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21426434

RESUMO

Trees' long lifespan, long-distance dispersal abilities and high year-to-year variability in fecundity are thought to have pervasive consequences for the demographic and genetic structure of recruited seedlings. However, we still lack experimental studies quantifying the respective roles of spatial processes such as restricted seed and pollen dispersal and temporal processes such as mast seeding on patterns of regeneration. Dynamics of European beech (Fagus sylvatica) seedling recruitment was monitored in three plots from 2004 to 2006. Six polymorphic microsatellite genetic markers were used to characterize seedlings and their potential parents in a 7.2-ha stand. These seedlings were shown to result from 12 years of recruitment, with one predominant year of seedling recruitment in 2002 and several years without significant recruitment. Using a spatially explicit mating model based on parentage assignment, short average dispersal distances for seed (δ(s) = 10.9 m) and pollen (43.7 m < δ(p) <57.3 m) were found, but there was also a non-negligible immigration rate from outside the plot (m(s) = 20.5%; 71.6% < m(p) < 77.9%). Hierarchical analyses of seedling genetic structure showed that (i) most of the genetic variation was within plots; (ii) the genetic differentiation among seedling plots was significant (F(ST) = 2.6%) while (iii) there was no effect of year-to-year seed rain variation on genetic structure. In addition, no significant effect of genetic structure on mortality was detected. The consequences of these results for the prediction of population dynamics at ecological timescales are discussed.


Assuntos
Fagus/genética , Fagus/fisiologia , Dispersão de Sementes , Fluxo Gênico , Estruturas Genéticas , Repetições de Microssatélites/genética , Pólen/genética , Dinâmica Populacional , Plântula/genética , Sementes/genética , Sementes/fisiologia , Árvores/genética
16.
Mol Ecol ; 20(24): 5182-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22097929

RESUMO

Range expansion and contraction has occurred in the history of most species and can seriously impact patterns of genetic diversity. Historical data about range change are rare and generally appropriate for studies at large scales, whereas the individual pollen and seed dispersal events that form the basis of geneflow and colonization generally occur at a local scale. In this study, we investigated range change in Fagus sylvatica on Mont Ventoux, France, using historical data from 1838 to the present and approximate Bayesian computation (ABC) analyses of genetic data. From the historical data, we identified a population minimum in 1845 and located remnant populations at least 200 years old. The ABC analysis selected a demographic scenario with three populations, corresponding to two remnant populations and one area of recent expansion. It also identified expansion from a smaller ancestral population but did not find that this expansion followed a population bottleneck, as suggested by the historical data. Despite a strong support to the selected scenario for our data set, the ABC approach showed a low power to discriminate among scenarios on average and a low ability to accurately estimate effective population sizes and divergence dates, probably due to the temporal scale of the study. This study provides an unusual opportunity to test ABC analysis in a system with a well-documented demographic history and identify discrepancies between the results of historical, classical population genetic and ABC analyses. The results also provide valuable insights into genetic processes at work at a fine spatial and temporal scale in range change and colonization.


Assuntos
Bases de Dados Genéticas , Fagus/genética , Genética Populacional , Teorema de Bayes , Biologia Computacional , DNA/genética , DNA/isolamento & purificação , França , Marcadores Genéticos , Variação Genética , Genótipo , Modelos Logísticos , Repetições de Microssatélites , Modelos Biológicos , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
17.
Biology (Basel) ; 9(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397286

RESUMO

The number of screening tests carried out in France and the methodology used to target the patients tested do not allow for a direct computation of the actual number of cases and the infection fatality ratio (IFR). The main objective of this work is to estimate the actual number of people infected with COVID-19 and to deduce the IFR during the observation window in France. We develop a `mechanistic-statistical' approach coupling a SIR epidemiological model describing the unobserved epidemiological dynamics, a probabilistic model describing the data acquisition process and a statistical inference method. The actual number of infected cases in France is probably higher than the observations: we find here a factor ×8 (95%-CI: 5-12) which leads to an IFR in France of 0.5% (95%-CI: 0.3-0.8) based on hospital death counting data. Adjusting for the number of deaths in nursing homes, we obtain an IFR of 0.8% (95%-CI: 0.45-1.25). This IFR is consistent with previous findings in China (0.66%) and in the UK (0.9%) and lower than the value previously computed on the Diamond Princess cruse ship data (1.3%).

18.
Front Med (Lausanne) ; 7: 274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582739

RESUMO

The COVID-19 epidemic was reported in the Hubei province in China in December 2019 and then spread around the world reaching the pandemic stage at the beginning of March 2020. Since then, several countries went into lockdown. Using a mechanistic-statistical formalism, we estimate the effect of the lockdown in France on the contact rate and the effective reproduction number R e of the COVID-19. We obtain a reduction by a factor 7 (R e = 0.47, 95%-CI: 0.45-0.50), compared to the estimates carried out in France at the early stage of the epidemic. We also estimate the fraction of the population that would be infected by the beginning of May, at the official date at which the lockdown should be relaxed. We find a fraction of 3.7% (95%-CI: 3.0-4.8%) of the total French population, without taking into account the number of recovered individuals before April 1st, which is not known. This proportion is seemingly too low to reach herd immunity. Thus, even if the lockdown strongly mitigated the first epidemic wave, keeping a low value of R e is crucial to avoid an uncontrolled second wave (initiated with much more infectious cases than the first wave) and to hence avoid the saturation of hospital facilities.

19.
Theor Appl Genet ; 118(6): 1083-92, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19183859

RESUMO

Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers' activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power-law) dependent on the distance from the pollen source. A literature survey confirmed that power-law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild populations and preserving the sustainable utility of the resistant varieties. Whether such a goal is attainable remains an open question and certainly would be worth a large scale experimental study.


Assuntos
Beta vulgaris , Produtos Agrícolas/genética , Fluxo Gênico , Pólen/metabolismo , Beta vulgaris/citologia , Beta vulgaris/genética , Genética Populacional , Resistência a Herbicidas/genética , Modelos Genéticos , Plantas Geneticamente Modificadas/genética
20.
Evolution ; 73(5): 897-912, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852845

RESUMO

Sexual selection may contribute to the evolution of plant sexual dimorphism by favoring architectural traits in males that improve pollen dispersal to mates. In both sexes, larger individuals may be favored by allowing the allocation of more resources to gamete production (a "budget" effect of size). In wind-pollinated plants, large size may also benefit males by allowing the liberation of pollen from a greater height, fostering its dispersal (a "direct" effect of size). To assess these effects and their implications for trait selection, we measured selection on plant morphology in both males and females of the wind-pollinated dioecious herb Mercurialis annua in two separate experimental common gardens at contrasting density. In both gardens, selection strongly favored males that disperse their pollen further. Selection for pollen production was observed in the high-density garden only, and was weak. In addition, male morphologies associated with increased mean pollen dispersal differed between the two gardens, as elongated branches were favored in the high-density garden, whereas shorter plants with longer inflorescence stalks were favored in the low-density garden. Larger females were selected in both gardens. Our results point to the importance of both a direct effect of selection on male traits that affect pollen dispersal, and, to a lesser extent, a budget effect of selection on pollen production.


Assuntos
Euphorbiaceae/genética , Euphorbiaceae/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Dispersão de Sementes , Evolução Biológica , Genótipo , Modelos Biológicos , Reprodução , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA