Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 20(3): 187-216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216754

RESUMO

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Fosforilação , Fosfatidilinositol 3-Quinases/metabolismo , Hepatócitos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Fígado Gorduroso/metabolismo , Neoplasias Hepáticas/patologia
2.
Drug Resist Updat ; 74: 101081, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521003

RESUMO

Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms. We showed that Eml4-Alk variant 3 confers a worse response to ALK inhibitors, suggesting its role in promoting resistance to targeted therapy. In addition, proteomic analysis of brigatinib-treated cells revealed the upregulation of SRC kinase, a protein frequently activated in cancer. Co-targeting of ALK and SRC showed remarkable inhibitory effects in both ALK-driven murine and ALK-patient-derived lung tumor cells. This combination induced cell death through a multifaceted mechanism characterized by profound perturbation of the (phospho)proteomic landscape and a synergistic suppressive effect on the mTOR pathway. Our study demonstrates that the simultaneous inhibition of ALK and SRC can potentially overcome resistance mechanisms and enhance clinical outcomes in ALK-positive lung cancer patients. ONE SENTENCE SUMMARY: Co-targeting ALK and SRC enhances ALK inhibitor response in lung cancer by affecting the proteomic profile, offering hope for overcoming resistance and improving clinical outcomes.


Assuntos
Quinase do Linfoma Anaplásico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Compostos Organofosforados , Inibidores de Proteínas Quinases , Proteoma , Quinases da Família src , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Humanos , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Camundongos , Proteoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteômica/métodos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Cancer Cell Int ; 23(1): 315, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066598

RESUMO

Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response, e.g. through a direct impact on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones resistant to the antiproliferative effects of IFNs may contribute to immunoediting of tumours, leading to more aggressive disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that six weeks exposure of cells to IFN-ß in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-ß in a panel of ten different liver cancer cell lines, most prominently in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours. In both, long-term IFN selection and in dedifferentiated tumour cell lines, we found IFNAR2 expression to be substantially reduced, suggesting the receptor complex to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.

4.
Biochem J ; 479(12): 1361-1374, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35748700

RESUMO

In health and disease, liver cells are continuously exposed to cytokines and growth factors. While individual signal transduction pathways induced by these factors were studied in great detail, the cellular responses induced by repeated or combined stimulations are complex and less understood. Growth factor receptors on the cell surface of hepatocytes were shown to be regulated by receptor interactions, receptor trafficking and feedback regulation. Here, we exemplify how mechanistic mathematical modelling based on quantitative data can be employed to disentangle these interactions at the molecular level. Crucial is the analysis at a mechanistic level based on quantitative longitudinal data within a mathematical framework. In such multi-layered information, step-wise mathematical modelling using submodules is of advantage, which is fostered by sharing of standardized experimental data and mathematical models. Integration of signal transduction with metabolic regulation in the liver and mechanistic links to translational approaches promise to provide predictive tools for biology and personalized medicine.


Assuntos
Modelos Biológicos , Biologia de Sistemas , Fígado , Modelos Teóricos , Transdução de Sinais/fisiologia
5.
Proc Natl Acad Sci U S A ; 117(19): 10294-10304, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341162

RESUMO

Many cancer cells consume glutamine at high rates; counterintuitively, they simultaneously excrete glutamate, the first intermediate in glutamine metabolism. Glutamine consumption has been linked to replenishment of tricarboxylic acid cycle (TCA) intermediates and synthesis of adenosine triphosphate (ATP), but the reason for glutamate excretion is unclear. Here, we dynamically profile the uptake and excretion fluxes of a liver cancer cell line (HepG2) and use genome-scale metabolic modeling for in-depth analysis. We find that up to 30% of the glutamine is metabolized in the cytosol, primarily for nucleotide synthesis, producing cytosolic glutamate. We hypothesize that excreting glutamate helps the cell to increase the nucleotide synthesis rate to sustain growth. Indeed, we show experimentally that partial inhibition of glutamate excretion reduces cell growth. Our integrative approach thus links glutamine addiction to glutamate excretion in cancer and points toward potential drug targets.


Assuntos
Trifosfato de Adenosina/metabolismo , Carcinoma Hepatocelular/patologia , Citosol/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Ciclo do Ácido Cítrico , Metabolismo Energético , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo
6.
PLoS Pathog ; 16(10): e1008461, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33002089

RESUMO

The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes. Guided by the mathematical model, we uncovered that this regulatory loop is mediated by the transcription factor IRF2 and showed that knock-down of IRF2 results in enhanced expression of early, intermediate and late IFNα-induced antiviral genes. Co-stimulation experiments with different pro-inflammatory cytokines revealed that this amplified expression dynamics of the early, intermediate and late IFNα-induced antiviral genes can also be achieved by co-application of IFNα and interleukin1 beta (IL1ß). Consistently, we found that IL1ß enhances IFNα-mediated repression of viral replication. Conversely, we observed that in IL1ß receptor knock-out mice replication of viruses sensitive to IFNα is increased. Thus, IL1ß is capable to potentiate IFNα-induced antiviral responses and could be exploited to improve antiviral therapies.


Assuntos
Regulação Viral da Expressão Gênica/efeitos dos fármacos , Fator Regulador 2 de Interferon/metabolismo , Interferon-alfa/farmacologia , Coriomeningite Linfocítica/tratamento farmacológico , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Fator Regulador 2 de Interferon/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/isolamento & purificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estabilidade de RNA
7.
Mol Syst Biol ; 16(7): e8955, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32696599

RESUMO

Tightly interlinked feedback regulators control the dynamics of intracellular responses elicited by the activation of signal transduction pathways. Interferon alpha (IFNα) orchestrates antiviral responses in hepatocytes, yet mechanisms that define pathway sensitization in response to prestimulation with different IFNα doses remained unresolved. We establish, based on quantitative measurements obtained for the hepatoma cell line Huh7.5, an ordinary differential equation model for IFNα signal transduction that comprises the feedback regulators STAT1, STAT2, IRF9, USP18, SOCS1, SOCS3, and IRF2. The model-based analysis shows that, mediated by the signaling proteins STAT2 and IRF9, prestimulation with a low IFNα dose hypersensitizes the pathway. In contrast, prestimulation with a high dose of IFNα leads to a dose-dependent desensitization, mediated by the negative regulators USP18 and SOCS1 that act at the receptor. The analysis of basal protein abundance in primary human hepatocytes reveals high heterogeneity in patient-specific amounts of STAT1, STAT2, IRF9, and USP18. The mathematical modeling approach shows that the basal amount of USP18 determines patient-specific pathway desensitization, while the abundance of STAT2 predicts the patient-specific IFNα signal response.


Assuntos
Retroalimentação Fisiológica/efeitos dos fármacos , Hepatócitos/metabolismo , Interferon-alfa/farmacologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hepatócitos/efeitos dos fármacos , Humanos , Fator Regulador 2 de Interferon/genética , Fator Regulador 2 de Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Modelos Teóricos , RNA Interferente Pequeno , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Transdução de Sinais/genética , Software , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
8.
Toxicol Appl Pharmacol ; 391: 114915, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035082

RESUMO

Idiosyncratic drug-induced liver injury (IDILI) is a severe disease that cannot be detected during drug development. It has been shown that hepatotoxicity of some compounds associated with IDILI becomes apparent when these are combined in vivo and in vitro with LPS or TNF. Among these compounds trovafloxacin (TVX) induced apoptosis in the liver and increased pro-inflammatory cytokines in mice exposed to LPS/TNF. The hepatocyte survival and the cytokine release after TNF/LPS stimulation relies on a pulsatile activation of NF-κB. We set out to evaluate the dynamic activation of NF-κB in response to TVX + TNF or LPS models, both in mouse and human cells. Remarkably, TVX prolonged the first translocation of NF-κB induced by TNF both in vivo and in vitro. The prolonged p65 translocation caused by TVX was associated with an increased phosphorylation of IKK and MAPKs and accumulation of inhibitors of NF-κB such as IκBα and A20 in HepG2. Coherently, TVX suppressed further TNF-induced NF-κB translocations in HepG2 leading to decreased transcription of ICAM-1 and inhibitors of apoptosis. TVX prolonged LPS-induced NF-κB translocation in RAW264.7 macrophages increasing the secretion of TNF. In summary, this study presents new, relevant insights into the mechanism of TVX-induced liver injury underlining the resemblance between mouse and human models. In this study we convincingly show that regularly used toxicity models provide a coherent view of relevant pathways for IDILI. We propose that assessment of the kinetics of activation of NF-κB and MAPKs is an appropriate tool for the identification of hepatotoxic compounds during drug development.


Assuntos
Antibacterianos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fluoroquinolonas/toxicidade , Lipopolissacarídeos/farmacologia , Naftiridinas/toxicidade , Fator de Transcrição RelA/efeitos dos fármacos , Fator de Transcrição RelA/genética , Translocação Genética/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Citocinas/metabolismo , Humanos , Proteínas I-kappa B/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
9.
J Biol Chem ; 292(15): 6291-6302, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223354

RESUMO

The IL-1ß induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1ß-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1ß concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1ß via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1ß. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1-1.2 µm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1ß were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1ß-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation.


Assuntos
Hepatócitos/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Hepatócitos/citologia , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
Mol Syst Biol ; 13(1): 904, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28123004

RESUMO

Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro-proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type-specific proliferation. First, cell type-specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate-limiting for faster cycling cells while slower cell cycles are controlled at the G1-S progression. The integrated mathematical model of Epo-driven proliferation explains cell type-specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti-proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance.


Assuntos
Células Eritroides/citologia , Eritropoetina/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Células Cultivadas , Células Eritroides/metabolismo , Humanos , Camundongos , Modelos Teóricos
11.
PLoS Comput Biol ; 13(9): e1005779, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945754

RESUMO

Cells typically vary in their response to extracellular ligands. Receptor transport processes modulate ligand-receptor induced signal transduction and impact the variability in cellular responses. Here, we quantitatively characterized cellular variability in erythropoietin receptor (EpoR) trafficking at the single-cell level based on live-cell imaging and mathematical modeling. Using ensembles of single-cell mathematical models reduced parameter uncertainties and showed that rapid EpoR turnover, transport of internalized EpoR back to the plasma membrane, and degradation of Epo-EpoR complexes were essential for receptor trafficking. EpoR trafficking dynamics in adherent H838 lung cancer cells closely resembled the dynamics previously characterized by mathematical modeling in suspension cells, indicating that dynamic properties of the EpoR system are widely conserved. Receptor transport processes differed by one order of magnitude between individual cells. However, the concentration of activated Epo-EpoR complexes was less variable due to the correlated kinetics of opposing transport processes acting as a buffering system.


Assuntos
Transporte Biológico/fisiologia , Modelos Biológicos , Receptores de Superfície Celular/metabolismo , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Biologia Computacional , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Cinética , Microscopia Confocal , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/química , Receptores da Eritropoetina
12.
Gut ; 66(5): 939-954, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28336518

RESUMO

OBJECTIVE: Bone morphogenetic protein (BMP)-9, a member of the transforming growth factor-ß family of cytokines, is constitutively produced in the liver. Systemic levels act on many organs and tissues including bone and endothelium, but little is known about its hepatic functions in health and disease. DESIGN: Levels of BMP-9 and its receptors were analysed in primary liver cells. Direct effects of BMP-9 on hepatic stellate cells (HSCs) and hepatocytes were studied in vitro, and the role of BMP-9 was examined in acute and chronic liver injury models in mice. RESULTS: Quiescent and activated HSCs were identified as major BMP-9 producing liver cell type. BMP-9 stimulation of cultured hepatocytes inhibited proliferation, epithelial to mesenchymal transition and preserved expression of important metabolic enzymes such as cytochrome P450. Acute liver injury caused by partial hepatectomy or single injections of carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) into mice resulted in transient downregulation of hepatic BMP-9 mRNA expression. Correspondingly, LPS stimulation led to downregulation of BMP-9 expression in cultured HSCs. Application of BMP-9 after partial hepatectomy significantly enhanced liver damage and disturbed the proliferative response. Chronic liver damage in BMP-9-deficient mice or in mice adenovirally overexpressing the selective BMP-9 antagonist activin-like kinase 1-Fc resulted in reduced deposition of collagen and subsequent fibrosis. CONCLUSIONS: Constitutive expression of low levels of BMP-9 stabilises hepatocyte function in the healthy liver. Upon HSC activation, endogenous BMP-9 levels increase in vitro and in vivo and high levels of BMP-9 cause enhanced damage upon acute or chronic injury.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Fator 2 de Diferenciação de Crescimento/metabolismo , Fator 2 de Diferenciação de Crescimento/farmacologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/fisiologia , Cirrose Hepática/metabolismo , Regeneração Hepática/efeitos dos fármacos , Lesão Pulmonar Aguda/genética , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/antagonistas & inibidores , Fator 2 de Diferenciação de Crescimento/genética , Hepatectomia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Lipopolissacarídeos/farmacologia , Cirrose Hepática/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
BMC Bioinformatics ; 18(1): 33, 2017 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28088176

RESUMO

BACKGROUND: The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements. RESULTS: The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF). CONCLUSION: Here we describe a new, efficient method for the analysis of sparse and heterogeneous time course data with high detection sensitivity and transparency. It is implemented as R package TTCA (transcript time course analysis) and can be installed from the Comprehensive R Archive Network, CRAN. The source code is provided with the Additional file 1.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Humanos
14.
Blood ; 126(12): 1473-82, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26228485

RESUMO

RhoA GTPase has been shown in vitro in cell lines and in vivo in nonmammalian organisms to regulate cell division, particularly during cytokinesis and abscission, when 2 daughter cells partition through coordinated actomyosin and microtubule machineries. To investigate the role of this GTPase in the rapidly proliferating mammalian erythroid lineage, we developed a mouse model with erythroid-specific deletion of RhoA. This model was proved embryonic lethal as a result of severe anemia by embryonic day 16.5 (E16.5). The primitive red blood cells were enlarged, poikilocytic, and frequently multinucleated, but were able to sustain life despite experiencing cytokinesis failure. In contrast, definitive erythropoiesis failed and the mice died by E16.5, with profound reduction of maturing erythroblast populations within the fetal liver. RhoA was required to activate myosin-regulatory light chain and localized at the site of the midbody formation in dividing wild-type erythroblasts. Cytokinesis failure caused by RhoA deficiency resulted in p53 activation and p21-transcriptional upregulation with associated cell-cycle arrest, increased DNA damage, and cell death. Our findings demonstrate the role of RhoA as a critical regulator for efficient erythroblast proliferation and the p53 pathway as a powerful quality control mechanism in erythropoiesis.


Assuntos
Actomiosina/metabolismo , Citocinese , Eritroblastos/citologia , Eritropoese , Proteína Supressora de Tumor p53/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Eritroblastos/metabolismo , Eritroblastos/patologia , Feminino , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteína rhoA de Ligação ao GTP/metabolismo
15.
PLoS Comput Biol ; 12(8): e1005049, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27494133

RESUMO

Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Eritroides/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores da Eritropoetina , Transdução de Sinais/fisiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Biologia Computacional , Células Eritroides/citologia , Humanos , Neoplasias Pulmonares/genética , Receptores da Eritropoetina/análise , Receptores da Eritropoetina/classificação , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
16.
Mol Syst Biol ; 11(3): 795, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26148348

RESUMO

Liver regeneration is a tightly controlled process mainly achieved by proliferation of usually quiescent hepatocytes. The specific molecular mechanisms ensuring cell division only in response to proliferative signals such as hepatocyte growth factor (HGF) are not fully understood. Here, we combined quantitative time-resolved analysis of primary mouse hepatocyte proliferation at the single cell and at the population level with mathematical modeling. We showed that numerous G1/S transition components are activated upon hepatocyte isolation whereas DNA replication only occurs upon additional HGF stimulation. In response to HGF, Cyclin:CDK complex formation was increased, p21 rather than p27 was regulated, and Rb expression was enhanced. Quantification of protein levels at the restriction point showed an excess of CDK2 over CDK4 and limiting amounts of the transcription factor E2F-1. Analysis with our mathematical model revealed that T160 phosphorylation of CDK2 correlated best with growth factor-dependent proliferation, which we validated experimentally on both the population and the single cell level. In conclusion, we identified CDK2 phosphorylation as a gate-keeping mechanism to maintain hepatocyte quiescence in the absence of HGF.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Hepatócitos/efeitos dos fármacos , Tirosina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Modelos Teóricos , Fosforilação , Cultura Primária de Células , Análise de Célula Única
17.
Blood ; 123(10): 1574-85, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24385536

RESUMO

The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the "iron-regulated" bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6-triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism.


Assuntos
Regulação da Expressão Gênica , Hepcidinas/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Hepcidinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Elementos de Resposta , Transcrição Gênica
18.
PLoS Comput Biol ; 11(4): e1004192, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25905717

RESUMO

Signaling pathways are characterized by crosstalk, feedback and feedforward mechanisms giving rise to highly complex and cell-context specific signaling networks. Dissecting the underlying relations is crucial to predict the impact of targeted perturbations. However, a major challenge in identifying cell-context specific signaling networks is the enormous number of potentially possible interactions. Here, we report a novel hybrid mathematical modeling strategy to systematically unravel hepatocyte growth factor (HGF) stimulated phosphoinositide-3-kinase (PI3K) and mitogen activated protein kinase (MAPK) signaling, which critically contribute to liver regeneration. By combining time-resolved quantitative experimental data generated in primary mouse hepatocytes with interaction graph and ordinary differential equation modeling, we identify and experimentally validate a network structure that represents the experimental data best and indicates specific crosstalk mechanisms. Whereas the identified network is robust against single perturbations, combinatorial inhibition strategies are predicted that result in strong reduction of Akt and ERK activation. Thus, by capitalizing on the advantages of the two modeling approaches, we reduce the high combinatorial complexity and identify cell-context specific signaling networks.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Células Cultivadas , Simulação por Computador , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Blood ; 121(13): 2553-62, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23361909

RESUMO

B-cell lymphoma 11A (BCL11A) downregulation in human primary adult erythroid progenitors results in elevated expression of fetal γ-globin. Recent reports showed that BCL11A expression is activated by KLF1, leading to γ-globin repression. To study regulation of erythropoiesis and globin expression by KLF1 and BCL11A in an in vivo model, we used mice carrying a human ß-globin locus transgene with combinations of Klf1 knockout, Bcl11a floxed, and EpoR(Cre) knockin alleles. We found a higher percentage of reticulocytes in adult Klf1(wt/ko) mice and a mild compensated anemia in Bcl11a(cko/cko) mice. These phenotypes were more pronounced in compound Klf1(wt/ko)::Bcl11a(cko/cko) mice. Analysis of Klf1(wt/ko), Bcl11a(cko/cko), and Klf1(wt/ko)::Bcl11a(cko/cko) mutant embryos demonstrated increased expression of mouse embryonic globins during fetal development. Expression of human γ-globin remained high in Bcl11a(cko/cko) embryos during fetal development, and this was further augmented in Klf1(wt/ko)::Bcl11a(cko/cko) embryos. After birth, expression of human γ-globin and mouse embryonic globins decreased in Bcl11a(cko/cko) and Klf1(wt/ko)::Bcl11a(cko/cko) mice, but the levels remained much higher than those observed in control animals. Collectively, our data support an important role for the KLF1-BCL11A axis in erythroid maturation and developmental regulation of globin expression.


Assuntos
Proteínas de Transporte/genética , Eritropoese/genética , Genes de Troca/genética , Globinas/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Animais , Proteínas de Ligação a DNA , Embrião de Mamíferos , Eritropoese/fisiologia , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Rearranjo Gênico/genética , Rearranjo Gênico/fisiologia , Genes de Troca/fisiologia , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Repressoras , Reticulocitose/genética , Reticulocitose/fisiologia , Baço/citologia , Baço/embriologia , Baço/metabolismo
20.
J Proteome Res ; 13(12): 5685-94, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25333863

RESUMO

STAT5A and STAT5B are important transcription factors that dimerize and transduce activation signals of cytokine receptors directly to the nucleus. A typical cytokine that mediates STAT5 activation is erythropoietin (Epo). Differential functions of STAT5A and STAT5B have been reported. However, the extent to which phosphorylated STAT5A and STAT5B (pSTAT5A, pSTAT5B) form homo- or heterodimers is not understood, nor is how this might influence the signal transmission to the nucleus. To study this, we designed a concept to investigate the isoform-specific dimerization behavior of pSTAT5A and pSTAT5B that comprises isoform-specific immunoprecipitation (IP), measurement of the degree of phosphorylation, and isoform ratio determination between STAT5A and STAT5B. For the main analytical method, we employed quantitative label-free and -based mass spectrometry. For the cellular model system, we used Epo receptor (EpoR)-expressing BaF3 cells (BaF3-EpoR) stimulated with Epo. Three hypotheses of dimer formation between pSTAT5A and pSTAT5B were used to explain the analytical results by a static mathematical model: formation of (i) homodimers only, (ii) heterodimers only, and (iii) random formation of homo- and heterodimers. The best agreement between experimental data and model simulations was found for the last case. Dynamics of cytoplasmic STAT5 dimerization could be explained by distinct nuclear import rates and individual nuclear retention for homo- and heterodimers of phosphorylated STAT5.


Assuntos
Espectrometria de Massas/métodos , Modelos Teóricos , Multimerização Proteica , Fator de Transcrição STAT5/química , Algoritmos , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromatografia Líquida , Citoplasma/metabolismo , Eritropoetina/farmacologia , Immunoblotting , Cinética , Camundongos , Dados de Sequência Molecular , Fosforilação , Transporte Proteico/efeitos dos fármacos , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA