Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 615(7954): 945-953, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890234

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins1, a class of surface receptors poised for mechano-proteolytic activation2-4, including an evolutionarily conserved mechanism of cleavage5-8. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively). An NTF release sensor (NRS) of the neural latrophilin-type aGPCR Cirl (ADGRL)9-11, from Drosophila melanogaster, is stimulated by mechanical force. Cirl-NRS activation indicates that receptor dissociation occurs in neurons and cortex glial cells. The release of NTFs from cortex glial cells requires trans-interaction between Cirl and its ligand, the Toll-like receptor Tollo (Toll-8)12, on neural progenitor cells, whereas expressing Cirl and Tollo in cis suppresses dissociation of the aGPCR. This interaction is necessary to control the size of the neuroblast pool in the central nervous system. We conclude that receptor autoproteolysis enables non-cell-autonomous activities of aGPCRs, and that the dissociation of aGPCRs is controlled by their ligand expression profile and by mechanical force. The NRS system will be helpful in elucidating the physiological roles and signal modulators of aGPCRs, which constitute a large untapped reservoir of drug targets for cardiovascular, immune, neuropsychiatric and neoplastic diseases13.


Assuntos
Adesão Celular , Proteínas de Drosophila , Drosophila melanogaster , Ligantes , Proteólise , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Animais , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo
2.
Mol Cell Proteomics ; 23(1): 100701, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122899

RESUMO

Alström syndrome (ALMS) is a very rare autosomal-recessive disorder, causing a broad range of clinical defects most notably retinal degeneration, type 2 diabetes, and truncal obesity. The ALMS1 gene encodes a complex and huge ∼0.5 MDa protein, which has hampered analysis in the past. The ALMS1 protein is localized to the centrioles and the basal body of cilia and is involved in signaling processes, for example, TGF-ß signaling. However, the exact molecular function of ALMS1 at the basal body remains elusive and controversial. We recently demonstrated that protein complex analysis utilizing endogenously tagged cells provides an excellent tool to investigate protein interactions of ciliary proteins. Here, CRISPR/Cas9-mediated endogenously tagged ALMS1 cells were used for affinity-based protein complex analysis. Centrosomal and microtubule-associated proteins were identified, which are potential regulators of ALMS1 function, such as the centrosomal protein 70 kDa (CEP70). Candidate proteins were further investigated in ALMS1-deficient hTERT-RPE1 cells. Loss of ALMS1 led to shortened cilia with no change in structural protein localization, for example, acetylated and É£-tubulin, Centrin-3, or the novel interactor CEP70. Conversely, reduction of CEP70 resulted in decreased ALMS1 at the ciliary basal body. Complex analysis of CEP70 revealed domain-specific ALMS1 interaction involving the TPR-containing C-terminal (TRP-CT) fragment of CEP70. In addition to ALMS1, several ciliary proteins, including CEP135, were found to specifically bind to the TPR-CT domain. Data are available via ProteomeXchange with the identifier PXD046401. Protein interactors identified in this study provide candidate lists that help to understand ALMS1 and CEP70 function in cilia-related protein modification, cell death, and disease-related mechanisms.


Assuntos
Síndrome de Alstrom , Diabetes Mellitus Tipo 2 , Humanos , Síndrome de Alstrom/genética , Síndrome de Alstrom/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Obesidade , Tubulina (Proteína)
3.
Front Immunol ; 14: 1133967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960053

RESUMO

Introduction: B cells are acknowledged as crucial players in the pathogenesis of multiple sclerosis (MS). Several disease modifying drugs including cladribine have been shown to exert differential effects on peripheral blood B cell subsets. However, little is known regarding functional changes within the peripheral B cell populations. In this study, we obtained a detailed picture of B cell repertoire changes under cladribine treatment on a combined immunoglobulin (Ig) transcriptome and proteome level. Methods: We performed next-generation sequencing of Ig heavy chain (IGH) transcripts and Ig mass spectrometry in cladribine-treated patients with relapsing-remitting multiple sclerosis (n = 8) at baseline and after 6 and 12 months of treatment in order to generate Ig transcriptome and Ig peptide libraries. Ig peptides were overlapped with the corresponding IGH transcriptome in order to analyze B cell clones on a combined transcriptome and proteome level. Results: The analysis of peripheral blood B cell percentages pointed towards a significant decrease of memory B cells and an increase of naive B cells following cladribine therapy. While basic IGH repertoire parameters (e.g. variable heavy chain family usage and Ig subclasses) were only slightly affected by cladribine treatment, a significantly decreased number of clones and significantly lower diversity in the memory subset was noticeable at 6 months following treatment which was sustained at 12 months. When looking at B-cell clones comprising sequences from the different time-points, clones spanning between all three time-points were significantly more frequent than clones including sequences from two time-points. Furthermore, Ig proteome analyses showed that Ig transcriptome specific peptides could mostly be equally aligned to all three time-points pointing towards a proportion of B-cell clones that are maintained during treatment. Discussion: Our findings suggest that peripheral B cell related treatment effects of cladribine tablets might be exerted through a reduction of possibly disease relevant clones in the memory B cell subset without disrupting the overall clonal composition of B cells. Our results -at least partially- might explain the relatively mild side effects regarding infections and the sustained immune response after vaccinations during treatment. However, exact disease driving B cell subsets and their effects remain unknown and should be addressed in future studies.


Assuntos
Cladribina , Esclerose Múltipla , Humanos , Cladribina/uso terapêutico , Cladribina/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Células B de Memória , Proteoma , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/uso terapêutico , Células Clonais
4.
Front Mol Biosci ; 10: 1268722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074101

RESUMO

The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A-IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly.

5.
Genes (Basel) ; 13(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35885974

RESUMO

Intraflagellar transport (IFT) is a microtubule-based system that supports the assembly and maintenance of cilia. The dysfunction of IFT leads to ciliopathies of variable severity. Two of the IFT-B components are the paralogue proteins TTC30A and TTC30B. To investigate whether these proteins constitute redundant functions, CRISPR/Cas9 was used to generate single TTC30A or B and double-knockout hTERT-RPE1 cells. Ciliogenesis assays showed the redundancy of both proteins while the polyglutamylation of cilia was affected in single knockouts. The localization of other IFT components was not affected by the depletion of a single paralogue. A loss of both proteins led to a severe ciliogenesis defect, resulting in no cilia formation, which was rescued by TTC30A or B. The redundancy can be explained by the highly similar interaction patterns of the paralogues; both equally interact with the IFT-B machinery. Our study demonstrates that a loss of one TTC30 paralogue can mostly be compensated by the other, thus preventing severe ciliary defects. However, cells assemble shorter cilia, which are potentially limited in their function, especially because of impaired polyglutamylation. A complete loss of both proteins leads to a deficit in IFT complex B integrity followed by disrupted IFT and subsequently no cilia formation.


Assuntos
Cílios , Ciliopatias , Transporte Biológico , Cílios/genética , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Humanos , Proteínas/metabolismo
6.
J Proteomics ; 231: 103947, 2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-32853754

RESUMO

Protein-protein interaction analysis is an important tool to elucidate the function of proteins and protein complexes as well as their dynamic behavior. To date, the analysis of tissue- or even cell- or compartment-specific protein interactions is still relying on the availability of specific antibodies suited for immunoprecipitation. Here, we aimed at establishing a method that allows identification of protein interactions and complexes from intact tissues independent of specific, high affinity antibodies used for protein pull-down and isolation. Tagged bait proteins were expressed in human HEK293T cells and residual interactors removed by SDS. The resulting tag-fusion protein was then used as bait to pull proteins from tissue samples. Tissue-specific interactions were reproducibly identified from porcine retina as well as from retinal pigment epithelium using the ciliary protein lebercilin as bait. Further, murine heart-specific interactors of two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 (cGK1) were investigated. Here, specific interactions were associated with the cGK1α and ß gene products, that differ only in their unique amino-terminal region comprising about 100 aa. As such, the new protocol provides a fast and reliable method for tissue-specific protein complex analysis which is independent of the availability or suitability of antibodies for immunoprecipitation. SIGNIFICANCE: Protein-protein interaction in the functional relevant tissue is still difficult due to the dependence on specific antibodies or bait production in bacteria or insect cells. Here, the tagged protein of interest is produced in a human cell line and bound proteins are gently removed using SDS. Because applying the suitable SDS concentration is a critical step, different SDS solutions were tested to demonstrate their influence on interactions and the clean-up process. The established protocol enabled a tissue-specific analysis of the ciliary proteins lebercilin and TMEM107 using pig eyes. In addition, two gene products of the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase type 1 showed distinct protein interactions in mouse heart tissue. With the easy, fast and cheap protocol presented here, deep insights in tissue-specific and functional relevant protein complex formation is possible.


Assuntos
Proteínas do Olho , Proteínas Associadas aos Microtúbulos , Animais , Células HEK293 , Humanos , Imunoprecipitação , Proteínas de Membrana , Camundongos , Isoformas de Proteínas , Suínos
7.
J Proteomics ; 230: 103981, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-32927112

RESUMO

Nephrotic syndrome is characterized by urinary excretion of plasma proteases or proteasuria. There is a lack of data on the quantity, activity status and identity of these aberrantly filtered proteases. We established a fluorescence-based substrate assay to quantify protease activity in urine samples from healthy and nephrotic humans and mice. Protease class activity was determined after addition of specific inhibitors. Individual proteases were identified by tandem mass spectrometry (MS/MS). In spot urine samples from 10 patients with acute nephrotic syndrome of various etiology, urinary protease activity was significantly increased compared to that of healthy persons (753 ±â€¯178 vs. 244 ±â€¯65 relative units, p < 0.05). The corresponding proteases were highly sensitive to inhibition by the serine protease inhibitors AEBSF (reduction by 85 ±â€¯6% and 72 ±â€¯8%, respectively) and aprotinin (83 ±â€¯9% vs. 25 ±â€¯6%, p < 0.05). MS/MS of all urinary proteins or after AEBSF purification showed that most of them were active serine proteases from the coagulation and complement cascade. These findings were recapitulated in mice, pointing to a similar pathophysiology. In conclusion, nephrotic syndrome leads to increased urinary excretion of active plasma proteases which can be termed proteasuria. Serine proteases account for the vast majority of urinary protease activity in health and nephrotic syndrome. SIGNIFICANCE STATEMENT: In this study, we found that nephrotic urine samples of humans and mice have a significantly increased protease activity compared to healthy urine samples, using a universal pentapeptide substrate library. This was driven by increased excretion of aprotinin-sensitive serine proteases. With tandem mass spectrometry, we provide a comprehensive and systematic overview of all urinary proteases or the "urine proteasome". We identified renally expressed proteases in health and addition of proteases from the coagulation and complement cascade in the nephrotic state. These results set the basis to study the role of urinary proteases at both health and nephrotic syndrome to find diagnostic markers of renal disease as well as possible therapeutic targets.


Assuntos
Síndrome Nefrótica , Animais , Humanos , Camundongos , Proteômica , Serina Proteases , Inibidores de Serina Proteinase , Espectrometria de Massas em Tandem
8.
Nutrients ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036197

RESUMO

In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1.


Assuntos
Micronutrientes , Proteoma , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma , Fator de Crescimento Transformador beta1/fisiologia , Zinco/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Células Cultivadas , Impedância Elétrica , Matriz Extracelular/metabolismo , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/prevenção & controle , Microvilosidades/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pigmentação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/fisiologia , Zinco/metabolismo
9.
iScience ; 23(12): 101797, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33299968

RESUMO

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme mAconitase, accumulation of NAD+, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease.

10.
Nat Commun ; 11(1): 499, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980649

RESUMO

Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.


Assuntos
Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Receptores ErbB/metabolismo , Mutação/genética , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Humanos , Fosforilação , Prognóstico , Análise de Sobrevida , Proteína de Morte Celular Associada a bcl/metabolismo
11.
PLoS One ; 14(6): e0218457, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220133

RESUMO

Age-related macular degeneration (AMD) is a common, progressive multifactorial vision-threatening disease and many genetic and environmental risk factors have been identified. The risk of AMD is influenced by lifestyle and diet, which may be reflected by an altered metabolic profile. Therefore, measurements of metabolites could identify biomarkers for AMD, and could aid in identifying high-risk individuals. Hypothesis-free technologies such as metabolomics have a great potential to uncover biomarkers or pathways that contribute to disease pathophysiology. To date, only a limited number of metabolomic studies have been performed in AMD. Here, we aim to contribute to the discovery of novel biomarkers and metabolic pathways for AMD using a targeted metabolomics approach of 188 metabolites. This study focuses on non-advanced AMD, since there is a need for biomarkers for the early stages of disease before severe visual loss has occurred. Targeted metabolomics was performed in 72 patients with early or intermediate AMD and 72 control individuals, and metabolites predictive for AMD were identified by a sparse partial least squares discriminant analysis. In our cohort, we identified four metabolite variables that were most predictive for early and intermediate stages of AMD. Increased glutamine and phosphatidylcholine diacyl C28:1 levels were detected in non-advanced AMD cases compared to controls, while the rate of glutaminolysis and the glutamine to glutamate ratio were reduced in non-advanced AMD. The association of glutamine with non-advanced AMD corroborates a recent report demonstrating an elevated glutamine level in early AMD using a different metabolomics technique. In conclusion, this study indicates that metabolomics is a suitable method for the discovery of biomarker candidates for AMD. In the future, larger metabolomics studies could add to the discovery of novel biomarkers in yet unknown AMD pathways and expand our insights in AMD pathophysiology.


Assuntos
Biomarcadores/sangue , Glutamina/metabolismo , Degeneração Macular/sangue , Metabolômica , Idoso , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Degeneração Macular/genética , Degeneração Macular/patologia , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade
12.
Transl Vis Sci Technol ; 7(6): 22, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564511

RESUMO

PURPOSE: To establish a robust workflow for combined mass spectrometry-based analysis of metabolites and proteins in tear fluid with regard to clinical applicability. METHODS: Tear fluid was taken from 12 healthy volunteers at different time points using specially designed Schirmer strips. Following the liquid extraction of metabolites from standardized punches, the remaining material was processed for bottom-up proteomics. Targeted metabolite profiling was performed adapting a metabolomics kit, which targets 188 metabolites from four different analyte classes. Proteomics was performed of the identical samples targeting 15 tear proteins relevant to ocular health. RESULTS: Sixty metabolites could be consistently determined in all tear samples (98 metabolites were detectable in average) covering acylcarnitines, amino acids, biogenic amines, and glycerophospholipids. Following normalization, the majority of metabolites exhibited intraindividual variances of less than 20%, both regarding different times of sampling, and the individual eye. The targeted analysis of tear proteins revealed a mean intraindividual variation of 23% for the three most abundant proteins. Even extreme differences in tear secretion rates resulted in interindividual variability below 30% for 65 metabolites and two proteins. CONCLUSIONS: The newly established workflow can be used for combined targeted detection of metabolites and proteins in one punch of a Schirmer strip in a clinical setting. TRANSLATIONAL RELEVANCE: Our data about intra- and interindividual as well as intereye variation provide a valuable basis for the design of clinical studies, and for the applicability of multiplexed "omics" to well accessible tear fluid with regard to future routine use.

14.
Nat Commun ; 7: 11491, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173435

RESUMO

Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine.


Assuntos
Cílios/metabolismo , Ciliopatias/genética , Nanismo/genética , Hipotonia Muscular/genética , Mapas de Interação de Proteínas , Proteínas/metabolismo , Coluna Vertebral/anormalidades , Transporte Biológico/fisiologia , Cromatografia de Afinidade/métodos , Ciliopatias/patologia , Ciliopatias/terapia , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Nanismo/patologia , Nanismo/terapia , Fibroblastos , Células HEK293 , Humanos , Espectrometria de Massas , Terapia de Alvo Molecular/métodos , Hipotonia Muscular/patologia , Hipotonia Muscular/terapia , Mapeamento de Interação de Proteínas/métodos , Proteínas/genética , Proteínas/isolamento & purificação , Proteômica/métodos , Coluna Vertebral/patologia , Análise de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA