Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Rev Neurosci ; 22(5): 275-289, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828309

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.


Assuntos
Canalopatias/etiologia , Canalopatias/fisiopatologia , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/fisiopatologia , Animais , Canalopatias/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos
2.
J Neurosci ; 39(1): 28-43, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389838

RESUMO

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais de Ação/fisiologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Feminino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/fisiologia , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Transmissão Sináptica/fisiologia
3.
J Neurosci ; 37(44): 10597-10610, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954868

RESUMO

The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release.SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function.


Assuntos
Endocitose/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Hipocampo/citologia , Masculino , Terminações Pré-Sinápticas/fisiologia , Ratos , Sinapses/fisiologia
4.
Proc Natl Acad Sci U S A ; 112(4): 949-56, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25561520

RESUMO

Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP's canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP's interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil , Mutação de Sentido Incorreto , Convulsões , Potenciais de Ação/genética , Substituição de Aminoácidos , Animais , Criança , Pré-Escolar , Drosophila , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia
5.
J Physiol ; 594(1): 83-97, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26427907

RESUMO

KEY POINTS: Single-channel recordings in CA3 pyramidal neurons revealed that large-conductance calcium-activated K(+) (BK) channel open probability was reduced by loss of fragile X mental retardation protein (FMRP) and that FMRP acts on BK channels by modulating the channel's gating kinetics. Fmr1/BKß4 double knockout mice were generated to genetically upregulate BK channel activity in the absence of FMRP. Deletion of the BKß4 subunit alleviated reduced BK channel open probability via increasing BK channel open frequency, but not through prolonging its open duration. Genetic upregulation of BK channel activity via deletion of BKß4 normalized action potential duration, excessive glutamate release and short-term synaptic plasticity during naturalistic stimulus trains in excitatory hippocampal neurons in the absence of FMRP. Genetic upregulation of BK channel activity via deletion of BKß4 was sufficient to normalize excessive epileptiform activity in an in vitro model of seizure activity in the hippocampal circuit in the absence of FMRP. Loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), yet the mechanisms underlying the pathophysiology of FXS are incompletely understood. Recent studies identified important new functions of FMRP in regulating neural excitability and synaptic transmission via both translation-dependent mechanisms and direct interactions of FMRP with a number of ion channels in the axons and presynaptic terminals. Among these presynaptic FMRP functions, FMRP interaction with large-conductance calcium-activated K(+) (BK) channels, specifically their auxiliary ß4 subunit, regulates action potential waveform and glutamate release in hippocampal and cortical pyramidal neurons. Given the multitude of ion channels and mechanisms that mediate presynaptic FMRP actions, it remains unclear, however, to what extent FMRP-BK channel interactions contribute to synaptic and circuit defects in FXS. To examine this question, we generated Fmr1/ß4 double knockout (dKO) mice to genetically upregulate BK channel activity in the absence of FMRP and determine its ability to normalize multilevel defects caused by FMRP loss. Single-channel analyses revealed that FMRP loss reduced BK channel open probability, and this defect was compensated in dKO mice. Furthermore, dKO mice exhibited normalized action potential duration, glutamate release and short-term dynamics during naturalistic stimulus trains in hippocampal pyramidal neurons. BK channel upregulation was also sufficient to correct excessive seizure susceptibility in an in vitro model of seizure activity in hippocampal slices. Our studies thus suggest that upregulation of BK channel activity normalizes multi-level deficits caused by FMRP loss.


Assuntos
Potenciais de Ação , Potenciais Pós-Sinápticos Excitadores , Síndrome do Cromossomo X Frágil/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Células Piramidais/metabolismo , Regulação para Cima , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia
6.
J Neurophysiol ; 116(6): 2564-2575, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27605532

RESUMO

Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/citologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/genética , Animais , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/fisiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Quinoxalinas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Valina/análogos & derivados , Valina/farmacologia
7.
J Physiol ; 593(22): 5009-24, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282581

RESUMO

KEY POINTS: Cortico-hippocampal feed-forward circuits formed by the temporoammonic (TA) pathway exhibit a marked increase in excitation/inhibition ratio and abnormal spike modulation functions in Fmr1 knock-out (KO) mice. Inhibitory, but not excitatory, synapse dysfunction underlies cortico-hippocampal feed-forward circuit abnormalities in Fmr1 KO mice. GABA release is reduced in TA-associated inhibitory synapses of Fmr1 KO mice in a GABAB receptor-dependent manner. Inhibitory synapse and feed-forward circuit defects are mediated predominately by presynaptic GABAB receptor signalling in the TA pathway of Fmr1 KO mice. GABAB receptor-mediated inhibitory synapse defects are circuit-specific and are not observed in the Schaffer collateral pathway-associated inhibitory synapses in stratum radiatum. ABSTRACT: Circuit hyperexcitability has been implicated in neuropathology of fragile X syndrome, the most common inheritable cause of intellectual disability. Yet, how canonical unitary circuits are affected in this disorder remains poorly understood. Here, we examined this question in the context of the canonical feed-forward inhibitory circuit formed by the temporoammonic (TA) branch of the perforant path, the major cortical input to the hippocampus. TA feed-forward circuits exhibited a marked increase in excitation/inhibition ratio and major functional defects in spike modulation tasks in Fmr1 knock-out (KO) mice, a fragile X mouse model. Changes in feed-forward circuits were caused specifically by inhibitory, but not excitatory, synapse defects. TA-associated inhibitory synapses exhibited increase in paired-pulse ratio and in the coefficient of variation of IPSPs, consistent with decreased GABA release probability. TA-associated inhibitory synaptic transmission in Fmr1 KO mice was also more sensitive to inhibition of GABAB receptors, suggesting an increase in presynaptic GABAB receptor (GABAB R) signalling. Indeed, the differences in inhibitory synaptic transmission between Fmr1 KO and wild-type (WT) mice were eliminated by a GABAB R antagonist. Inhibition of GABAB Rs or selective activation of presynaptic GABAB Rs also abolished the differences in the TA feed-forward circuit properties between Fmr1 KO and WT mice. These GABAB R-mediated defects were circuit-specific and were not observed in the Schaffer collateral pathway-associated inhibitory synapses. Our results suggest that the inhibitory synapse dysfunction in the cortico-hippocampal pathway of Fmr1 KO mice causes hyperexcitability and feed-forward circuit defects, which are mediated in part by a presynaptic GABAB R-dependent reduction in GABA release.


Assuntos
Córtex Cerebral/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Potenciais Pós-Sinápticos Inibidores , Receptores de GABA-B/metabolismo , Tálamo/fisiopatologia , Animais , Córtex Cerebral/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos , Sinapses/metabolismo , Sinapses/fisiologia , Tálamo/metabolismo
8.
Synapse ; 69(5): 256-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25522061

RESUMO

The ability of synapses to sustain neurotransmitter release during continuous activity critically relies on an efficient vesicle recycling program. Despite extensive research on synaptic function, the basic mechanisms of vesicle recycling remain poorly understood due to the relative inaccessibility of central synapses to conventional recording techniques. The extremely small size of synaptic vesicles, nearly five times below the diffraction-limited resolution of conventional light microscopy, has hampered efforts to define the mechanisms controlling their cycling. The complex sequence of dynamic processes that occur within the nerve terminals and link vesicle endocytosis and the subsequent round of release has been particularly difficult to study. The recent development of nanoscale-resolution imaging techniques has provided an opportunity to overcome these limitations and begin to reveal the mechanisms controlling vesicle recycling within individual nerve terminals. Here we summarize the recent advances in the implementation of super-resolution imaging and single-particle tracking approaches to study the dynamic steps of the vesicle recycling process within presynaptic terminals.


Assuntos
Limite de Detecção , Vesículas Sinápticas/ultraestrutura , Animais , Exocitose , Humanos , Microscopia/métodos , Vesículas Sinápticas/fisiologia
9.
Eur J Neurosci ; 39(10): 1602-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24646437

RESUMO

Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and mechanisms of these FMRP actions remain incompletely understood, and the role of FMRP in regulating synaptic release probability and presynaptic function remains debated. Here we used variance-mean analysis and peak-scaled nonstationary variance analysis to examine changes in both presynaptic and postsynaptic parameters during repetitive activity at excitatory CA3-CA1 hippocampal synapses in a mouse model of FXS. Our analyses revealed that loss of FMRP did not affect the basal release probability or basal synaptic transmission, but caused an abnormally elevated release probability specifically during repetitive activity. These abnormalities were not accompanied by changes in excitatory postsynaptic current kinetics, quantal size or postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor conductance. Our results thus indicate that FMRP regulates neurotransmission at excitatory hippocampal synapses specifically during repetitive activity via modulation of release probability in a presynaptic manner. Our study suggests that FMRP function in regulating neurotransmitter release is an activity-dependent phenomenon that may contribute to the pathophysiology of FXS.


Assuntos
Região CA1 Hipocampal/fisiopatologia , Região CA3 Hipocampal/fisiopatologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Transmissão Sináptica , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Cinética , Masculino , Camundongos Knockout , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia
10.
Elife ; 122024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345852

RESUMO

Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 knockout (KO) mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.


Assuntos
Síndrome do Cromossomo X Frágil , Transtornos Mentais , Camundongos , Animais , Neurônios/fisiologia , Interneurônios/metabolismo , Modelos Animais de Doenças , Giro Denteado/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
11.
Cell Rep ; 43(5): 114218, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38758651

RESUMO

Glucose has long been considered a primary energy source for synaptic function. However, it remains unclear to what extent alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in hippocampal synapses, we find that mitochondrial ATP production regulates basal vesicle release probability and release location within the active zone (AZ), evoked by single action potentials. Mitochondrial inhibition shifts vesicle release closer to the AZ center and alters the efficiency of vesicle retrieval by increasing the occurrence of ultrafast endocytosis. Furthermore, we uncover that terminals can use oxidative fuels to maintain the vesicle cycle during trains of activity. Mitochondria are sparsely distributed along hippocampal axons, and we find that terminals containing mitochondria display enhanced vesicle release and reuptake during high-frequency trains. Our findings suggest that mitochondria not only regulate several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.


Assuntos
Endocitose , Exocitose , Hipocampo , Mitocôndrias , Sinapses , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Endocitose/fisiologia , Animais , Hipocampo/metabolismo , Sinapses/metabolismo , Mitocôndrias/metabolismo , Exocitose/fisiologia , Transmissão Sináptica/fisiologia , Ratos , Trifosfato de Adenosina/metabolismo , Masculino , Potenciais de Ação/fisiologia
12.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988067

RESUMO

Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, the glucose level in the brain plummets, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program, which induces expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo. We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by providing metabolic support for the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 facilitates the metabolic plasticity of synaptic transmission.


Assuntos
Sirtuína 3 , Transmissão Sináptica , Axônios , Glucose , Neurônios , Sirtuína 3/genética , Animais , Ratos
13.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562794

RESUMO

Glucose has long been considered the primary fuel source for the brain. However, glucose levels fluctuate in the brain during sleep, intense circuit activity, or dietary restrictions, posing significant metabolic stress. Here, we demonstrate that the mammalian brain utilizes pyruvate as a fuel source, and pyruvate can support neuronal viability in the absence of glucose. Nerve terminals are sites of metabolic vulnerability within a neuron and we show that mitochondrial pyruvate uptake is a critical step in oxidative ATP production in hippocampal terminals. We find that the mitochondrial pyruvate carrier is post-translationally modified by lysine acetylation which in turn modulates mitochondrial pyruvate uptake. Importantly, our data reveal that the mitochondrial pyruvate carrier regulates distinct steps in synaptic transmission, namely, the spatiotemporal pattern of synaptic vesicle release and the efficiency of vesicle retrieval, functions that have profound implications for synaptic plasticity. In summary, we identify pyruvate as a potent neuronal fuel and mitochondrial pyruvate uptake as a critical node for the metabolic control of synaptic transmission in hippocampal terminals.

14.
J Neurosci ; 32(41): 14058-63, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23055473

RESUMO

Synaptic transmission is highly dependent on recent activity and can lead to depression or facilitation of synaptic strength. This phenomenon is called "short-term synaptic plasticity" and is shown at all synapses. While much work has been done to understand the mechanisms of short-term changes in the state of synapses, short-term plasticity is often thought of as a mechanistic consequence of the design of a synapse. This review will attempt to go beyond this view and discuss how, on one hand, complex neuronal activity affects the short-term state of synapses, but also how these dynamic changes in synaptic strength affect information processing in return.


Assuntos
Processos Mentais/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Senescência Celular/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Humanos , Fatores de Tempo
15.
J Neurophysiol ; 110(10): 2275-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23926043

RESUMO

Temporal codes are believed to play important roles in neuronal representation of information. Neuronal ability to classify and learn temporal spiking patterns is thus essential for successful extraction and processing of information. Understanding neuronal learning of temporal code has been complicated, however, by the intrinsic stochasticity of synaptic transmission. Using a computational model of a learning neuron, the tempotron, we studied the effects of synaptic unreliability and short-term dynamics on the neuron's ability to learn spike timing rules. Our results suggest that such a model neuron can learn to classify spike timing patterns even with unreliable synapses, albeit with a significantly reduced success rate. We explored strategies to improve correct spike timing classification and found that firing clustered spike bursts significantly improves learning performance. Furthermore, rapid activity-dependent modulation of synaptic unreliability, implemented with realistic models of dynamic synapses, further improved classification of different burst properties and spike timing modalities. Neuronal models with only facilitating or only depressing inputs exhibited preference for specific types of spike timing rules, but a mixture of facilitating and depressing synapses permitted much improved learning of multiple rules. We tested applicability of these findings to real neurons by considering neuronal learning models with the naturally distributed input release probabilities found in excitatory hippocampal synapses. Our results suggest that spike bursts comprise several encoding modalities that can be learned effectively with stochastic dynamic synapses, and that distributed release probabilities significantly improve learning performance. Synaptic unreliability and dynamics may thus play important roles in the neuron's ability to learn spike timing rules during decoding.


Assuntos
Potenciais de Ação/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Simulação por Computador , Fatores de Tempo
16.
Elife ; 122023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166282

RESUMO

Asynchronous release is a ubiquitous form of neurotransmitter release that persists for tens to hundreds of milliseconds after an action potential. How asynchronous release is organized and regulated at the synaptic active zone (AZ) remains debatable. Using nanoscale-precision imaging of individual release events in rat hippocampal synapses, we observed two spatially distinct subpopulations of asynchronous events, ~75% of which occurred inside the AZ and with a bias towards the AZ center, while ~25% occurred outside of the functionally defined AZ, that is, ectopically. The two asynchronous event subpopulations also differed from each other in temporal properties, with ectopic events occurring at significantly longer time intervals from synchronous events than the asynchronous events inside the AZ. Both forms of asynchronous release did not, to a large extent, utilize the same release sites as synchronous events. The two asynchronous event subpopulations also differ from synchronous events in some aspects of exo-endocytosis coupling, particularly in the contribution from the fast calcium-dependent endocytosis. These results identify two subpopulations of asynchronous release events with distinctive organization and spatiotemporal dynamics.


Assuntos
Cálcio , Sinapses , Ratos , Animais , Potenciais de Ação , Cálcio da Dieta , Neurotransmissores , Transmissão Sináptica/fisiologia
17.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37808793

RESUMO

Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 KO mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.

18.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986894

RESUMO

Glucose has long been considered a primary source of energy for synaptic function. However, it remains unclear under what conditions alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in cultured hippocampal synapses, we found that mitochondrial ATP production from oxidation of lactate/pyruvate regulates basal vesicle release probability and release location within the active zone (AZ) evoked by single action potentials (APs). Mitochondrial inhibition shifted vesicle release closer to the AZ center, suggesting that the energetic barrier for vesicle release is lower in the AZ center that the periphery. Mitochondrial inhibition also altered the efficiency of single AP evoked vesicle retrieval by increasing occurrence of ultrafast endocytosis, while inhibition of glycolysis had no effect. Mitochondria are sparsely distributed along hippocampal axons and we found that nerve terminals containing mitochondria displayed enhanced vesicle release and reuptake during high-frequency trains, irrespective of whether neurons were supplied with glucose or lactate. Thus, synaptic terminals can entirely bypass glycolysis to robustly maintain the vesicle cycle using oxidative fuels in the absence of glucose. These observations further suggest that mitochondrial metabolic function not only regulates several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.

19.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945567

RESUMO

Neurotransmission is an energetically expensive process that underlies cognition. During intense electrical activity or dietary restrictions, glucose levels in the brain plummet, forcing neurons to utilize alternative fuels. However, the molecular mechanisms of neuronal metabolic plasticity remain poorly understood. Here, we demonstrate that glucose-deprived neurons activate the CREB and PGC1α transcriptional program that induces the expression of the mitochondrial deacetylase Sirtuin 3 (Sirt3) both in vitro and in vivo . We show that Sirt3 localizes to axonal mitochondria and stimulates mitochondrial oxidative capacity in hippocampal nerve terminals. Sirt3 plays an essential role in sustaining synaptic transmission in the absence of glucose by powering the retrieval of synaptic vesicles after release. These results demonstrate that the transcriptional induction of Sirt3 ensures the metabolic plasticity of synaptic transmission. Highlights: Glucose deprivation drives transcriptional reprogramming of neuronal metabolism via CREB and PGC1α. Glucose or food deprivation trigger the neuronal expression of mitochondrial deacetylase sirtuin 3 (Sirt3) both in vitro and in vivo . Sirt3 stimulates oxidative ATP synthesis in nerve terminals.Sirt3 sustains the synaptic vesicle cycle in the absence of glucose.

20.
J Neurosci ; 31(30): 10971-82, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795546

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the presynaptic mechanisms of FXS have garnered relatively little attention and are poorly understood. Activity-dependent presynaptic processes give rise to several forms of short-term plasticity (STP), which is believed to control some of essential neural functions, including information processing, working memory, and decision making. The extent of STP defects and their contributions to the pathophysiology of FXS remain essentially unknown, however. Here we report marked presynaptic abnormalities at excitatory hippocampal synapses in Fmr1 knock-out (KO) mice leading to defects in STP and information processing. Loss of FMRP led to enhanced responses to high-frequency stimulation. Fmr1 KO mice also exhibited abnormal synaptic processing of natural stimulus trains, specifically excessive enhancement during the high-frequency spike discharges associated with hippocampal place fields. Analysis of individual STP components revealed strongly increased augmentation and reduced short-term depression attributable to loss of FMRP. These changes were associated with exaggerated calcium influx in presynaptic neurons during high-frequency stimulation, enhanced synaptic vesicle recycling, and enlarged readily-releasable and reserved vesicle pools. These data suggest that loss of FMRP causes abnormal STP and information processing, which may represent a novel mechanism contributing to cognitive impairments in FXS.


Assuntos
Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Sinapses/patologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Antagonistas GABAérgicos/farmacologia , Hipocampo/patologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Ácidos Fosfínicos/farmacologia , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Propanolaminas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/ultraestrutura , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA