Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acta Oncol ; 60(3): 277-284, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33151766

RESUMO

BACKGROUND AND PURPOSE: When treating patients for esophageal cancer (EC) with photon or proton radiotherapy (RT), breathing motion of the target and neighboring organs may result in deviations from the planned dose distribution. The aim of this study was to evaluate the magnitude and dosimetric impact of breathing motion. Results were based on comparing weekly 4D computed tomography (4D CT) scans with the planning CT, using the diaphragm as an anatomical landmark for EC. MATERIAL AND METHODS: A total of 20 EC patients were included in this study. Diaphragm breathing amplitudes and off-sets (changes in position with respect to the planning CT) were determined from delineated left diaphragm structures in weekly 4D CT-scans. The potential dosimetric impact of respiratory motion was shown in several example patients for photon and proton radiotherapy. RESULTS: Variation in diaphragm amplitudes were relatively small and ranged from 0 to 0.8 cm. However, the measured off-sets were larger, ranging from -2.1 to 1.9 cm. Of the 70 repeat CT-scans, the off-set exceeded the ITV-PTV margin of 0.8 cm during expiration in 4 CT-scans (5.7%) and during inspiration in 13 CT-scans (18.6%). The dosimetric validation revealed under- and overdosages in the VMAT and IMPT plans. CONCLUSIONS: Despite relatively constant breathing amplitudes, the variation in the diaphragm position (off-set), and consequently tumor position, was clinically relevant. These motion effects may result in either treatments that miss the target volume, or dose deviations in the form of highly localized over- or underdosed regions.


Assuntos
Neoplasias Esofágicas , Neoplasias Pulmonares , Radioterapia Guiada por Imagem , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Tomografia Computadorizada Quadridimensional , Humanos , Movimento (Física) , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Respiração
2.
Acta Oncol ; 58(12): 1775-1782, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31556764

RESUMO

Background: The aim of this study was to compare adaptive intensity modulated proton therapy (IMPT) robustness and organ sparing capabilities with that of adaptive volumetric arc photon therapy (VMAT).Material and methods: Eighteen lung cancer patients underwent a planning 4DCT (p4DCT) and 5 weekly repeated 4DCT (r4DCT) scans. Target volumes and organs at risk were manually delineated on the three-dimensional (3D) average scans of the p4DCT (av_p4DCT) and of the r4DCT scans (av_r4DCT). Planning target volume (PTV)-based VMAT plans and internal clinical target volume (ICTV)-based robust IMPT plans were optimized in 3D on the av_p4DCT and re-calculated on the av_r4DCTs. Re-planning on av_r4DCTs was performed when indicated and accumulated doses were evaluated on the av_p4DCT.Results: Adaptive VMAT and IMPT resulted in adequate ICTV coverage on av_r4DCT in all patients and adequate accumulated-dose ICTV coverage on av_p4DCT in 17/18 patients (due to a shrinking target in one patient). More frequent re-planning was needed for IMPT than for VMAT. The average mean heart dose reduction with IMPT compared with VMAT was 4.6 Gy (p = .001) and it was >5 Gy for five patients (6, 7, 8, 15, and 22 Gy). The average mean lung dose reduction was 3.2 Gy (p < .001). Significant reductions in heart and lung V5 Gy were observed with IMPT.Conclusion: Robust-planned IMPT required re-planning more often than VMAT but resulted in similar accumulated ICTV coverage. With IMPT, heart and lung mean dose values and low dose regions were significantly reduced. Substantial cardiac sparing was obtained in a subgroup of five patients (28%).


Assuntos
Neoplasias Pulmonares/radioterapia , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Carcinoma de Células Grandes/diagnóstico por imagem , Carcinoma de Células Grandes/radioterapia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Esôfago/diagnóstico por imagem , Esôfago/efeitos da radiação , Feminino , Tomografia Computadorizada Quadridimensional , Coração/diagnóstico por imagem , Coração/efeitos da radiação , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/diagnóstico por imagem
3.
Acta Oncol ; 57(2): 203-210, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28760089

RESUMO

BACKGROUND: The interplay effect might degrade the dose of pencil beam scanning proton therapy to a degree that free-breathing treatment might be impossible without further motion mitigation techniques, which complicate and prolong the treatment. We assessed whether treatment of free-breathing patients without motion mitigation is feasible. MATERIAL AND METHODS: For 40 lung cancer patients, 4DCT datasets and individual breathing patterns were used to simulate 4D dynamic dose distributions of 3D treatment plans over 33 fractions delivered with an IBA universal nozzle. Evaluation was done by assessing under- and overdosage in the target structure using the parameters V90, V95, V98, D98, D2, V107 and V110. The impact of using beam-specific target volumes and the impact of changes in motion and patient anatomy in control 4DCTs were assessed. RESULTS: Almost half of the patients had tumour motion amplitudes of less than 5 mm. Under- and overdosage was significantly smaller for patients with tumour motion below 5 mm compared to patients with larger motion (2% vs. 13% average absolute reduction of V95, 2% vs. 8% average increase in V107, p < .01). Simulating a 33-fraction treatment, the dose degradation was reduced but persisted for patients with tumour motion above 5 mm (average ΔV95 of <1% vs. 3%, p < .01). Beam-specific target volumes reduced the dose degradation in a fractionated treatment, but were more relevant for large motion. Repeated 4DCT revealed that changes in tumour motion during treatment might result in unexpected large dose degradations. CONCLUSION: Tumour motion amplitude is an indicator of dose degradation caused by the interplay effect. Fractionation reduces the dose degradation allowing the unmitigated treatment of patients with small tumour motions of less than 5 mm. The beam-specific target approach improves the dose coverage. The tumour motion and position needs to be assessed during treatment for all patients, to quickly react to possible changes, which might require treatment adaptation.


Assuntos
Artefatos , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos de Viabilidade , Tomografia Computadorizada Quadridimensional , Humanos , Movimento (Física) , Doses de Radiação , Radiometria/métodos , Radiocirurgia/métodos , Respiração , Estudos Retrospectivos
4.
Biomed Phys Eng Express ; 10(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38241732

RESUMO

Range uncertainties remain a limitation for the confined dose distribution that proton therapy can offer. The uncertainty stems from the ambiguity when translating CT Hounsfield Units (HU) into proton stopping powers. Proton Radiography (PR) can be used to verify the proton range. Specifically, PR can be used as a quality-control tool for CBCT-based synthetic CTs. An essential part of the work illustrating the potential of PR has been conducted using multi-layer ionization chamber (MLIC) detectors and mono-energetic PR. Due to the dimensions of commercially available MLICs, clinical adoption is cumbersome. Here, we present a simulation framework exploring locally-tuned single energy (LTSE) proton radiography and corresponding potential compact PR detector designs. Based on a planning CT data set, the presented framework models the water equivalent thickness. Subsequently, it analyses the proton energies required to pass through the geometry within a defined ROI. In the final step, an LTSE PR is simulated using the MCsquare Monte Carlo code. In an anatomical head phantom, we illustrate that LTSE PR allows for a significantly shorter longitudinal dimension of MLICs. We compared PR simulations for two exemplary 30 × 30 mm2proton fields passing the phantom at a 90° angle at an anterior and a posterior location in an iso-centric setup. The longitudinal distance over which all spots per field range out is significantly reduced for LTSE PR compared to mono-energetic PR. In addition, we illustrate the difference in shape of integral depth dose (IDD) when using constrained PR energies. Finally, we demonstrate the accordance of simulated and experimentally acquired IDDs for an LTSE PR acquisition. As the next steps, the framework will be used to investigate the sensitivity of LTSE PR to various sources of errors. Furthermore, we will use the framework to systematically explore the dimensions of an optimized MLIC design for daily clinical use.


Assuntos
Terapia com Prótons , Prótons , Radiografia , Simulação por Computador , Imagens de Fantasmas
5.
Radiat Oncol ; 19(1): 75, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886727

RESUMO

BACKGROUND AND PURPOSE: Rare but severe toxicities of the optic apparatus have been observed after treatment of intracranial tumours with proton therapy. Some adverse events have occurred at unusually low dose levels and are thus difficult to understand considering dose metrics only. When transitioning from double scattering to pencil beam scanning, little consideration was given to increased dose rates observed with the latter delivery paradigm. We explored if dose rate related metrics could provide additional predicting factors for the development of late visual toxicities. MATERIALS AND METHODS: Radiation-induced intracranial visual pathway lesions were delineated on MRI for all index cases. Voxel-wise maximum dose rate (MDR) was calculated for 2 patients with observed optic nerve toxicities (CTCAE grade 3 and 4), and 6 similar control cases. Additionally, linear energy transfer (LET) related dose enhancing metrics were investigated. RESULTS: For the index cases, which developed toxicities at low dose levels (mean, 50 GyRBE), some dose was delivered at higher instantaneous dose rates. While optic structures of non-toxicity cases were exposed to dose rates of up to 1 to 3.2 GyRBE/s, the pre-chiasmatic optic nerves of the 2 toxicity cases were exposed to dose rates above 3.7 GyRBE/s. LET-related metrics were not substantially different between the index and non-toxicity cases. CONCLUSIONS: Our observations reveal large variations in instantaneous dose rates experienced by different volumes within our patient cohort, even when considering the same indications and beam arrangement. High dose rate regions are spatially overlapping with the radiation induced toxicity areas in the follow up images. At this point, it is not feasible to establish causality between exposure to high dose rates and the development of late optic apparatus toxicities due to the low incidence of injury.


Assuntos
Neoplasias Encefálicas , Terapia com Prótons , Lesões por Radiação , Dosagem Radioterapêutica , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Neoplasias Encefálicas/radioterapia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Lesões por Radiação/etiologia , Idoso , Nervo Óptico/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Relação Dose-Resposta à Radiação
6.
Phys Imaging Radiat Oncol ; 29: 100535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298885

RESUMO

Background and purpose: Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods: This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results: Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion: This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.

7.
Phys Imaging Radiat Oncol ; 26: 100439, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124167

RESUMO

Background and purpose: Organ motion compromises accurate particle therapy delivery. This study reports on the practice patterns for real-time intrafractional motion-management in particle therapy to evaluate current clinical practice and wishes and barriers to implementation. Materials and methods: An institutional questionnaire was distributed to particle therapy centres worldwide (7/2020-6/2021) asking which type(s) of real-time respiratory motion management (RRMM) methods were used, for which treatment sites, and what were the wishes and barriers to implementation. This was followed by a three-round DELPHI consensus analysis (10/2022) to define recommendations on required actions and future vision. With 70 responses from 17 countries, response rate was 100% for Europe (23/23 centres), 96% for Japan (22/23) and 53% for USA (20/38). Results: Of the 68 clinically operational centres, 85% used RRMM, with 41% using both rescanning and active methods. Sixty-four percent used active-RRMM for at least one treatment site, mostly with gating guided by an external marker. Forty-eight percent of active-RRMM users wished to expand or change their RRMM technique. The main barriers were technical limitations and limited resources. From the DELPHI analysis, optimisation of rescanning parameters, improvement of motion models, and pre-treatment 4D evaluation were unanimously considered clinically important future focus. 4D dose calculation was identified as the top requirement for future commercial treatment planning software. Conclusion:  A majority of particle therapy centres have implemented RRMM. Still, further development and clinical integration were desired by most centres. Joint industry, clinical and research efforts are needed to translate innovation into efficient workflows for broad-scale implementation.

8.
Med Phys ; 50(3): 1756-1765, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36629844

RESUMO

BACKGROUND: Proton radiography (PR) uses highly energetic proton beams to create images where energy loss is the main contrast mechanism. Water-equivalent path length (WEPL) measurements using flat panel PR (FP-PR) have potential for in vivo range verification. However, an accurate WEPL measurement via FP-PR requires irradiation with multiple energy layers, imposing high imaging doses. PURPOSE: A FP-PR method is proposed for accurate WEPL determination based on a patient-specific imaging field with a reduced number of energies (n) to minimize imaging dose. METHODS: Patient-specific FP-PRs were simulated and measured for a head and neck (HN) phantom. An energy selection algorithm estimated spot-wise the lowest energy required to cross the anatomy (Emin) using a water-equivalent thickness map. Starting from Emin, n was restricted to certain values (n = 26, 24, 22, …, 2 for simulations, n = 10 for measurements), resulting in patient-specific FP-PRs. A reference FP-PR with a complete set of energies was compared against patient-specific FP-PRs covering the whole anatomy via mean absolute WEPL differences (MAD), to evaluate the impact of the developed algorithm. WEPL accuracy of patient-specific FP-PRs was assessed using mean relative WEPL errors (MRE) with respect to measured multi-layer ionization chamber PRs (MLIC-PR) in the base of skull, brain, and neck regions. RESULTS: MADs ranged from 2.1 mm (n = 26) to 21.0 mm (n = 2) for simulated FP-PRs, and 7.2 mm for measured FP-PRs (n = 10). WEPL differences below 1 mm were observed across the whole anatomy, except at the phantom surfaces. Measured patient-specific FP-PRs showed good agreement against MLIC-PRs, with MREs of 1.3 ± 2.0%, -0.1 ± 1.0%, and -0.1 ± 0.4% in the three regions of the phantom. CONCLUSION: A method to obtain accurate WEPL measurements using FP-PR with a reduced number of energies selected for the individual patient anatomy was established in silico and validated experimentally. Patient-specific FP-PRs could provide means of in vivo range verification.


Assuntos
Terapia com Prótons , Prótons , Humanos , Água , Radiografia , Imagens de Fantasmas , Cabeça/diagnóstico por imagem
9.
Phys Imaging Radiat Oncol ; 26: 100442, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37197154

RESUMO

Background and purpose: Anatomical changes may compromise the planned target coverage and organs-at-risk dose in particle therapy. This study reports on the practice patterns for adaptive particle therapy (APT) to evaluate current clinical practice and wishes and barriers to further implementation. Materials and methods: An institutional questionnaire was distributed to PT centres worldwide (7/2020-6/2021) asking which type of APT was used, details of the workflow, and what the wishes and barriers to implementation were. Seventy centres from 17 countries participated. A three-round Delphi consensus analysis (10/2022) among the authors followed to define recommendations on required actions and future vision. Results: Out of the 68 clinically operational centres, 84% were users of APT for at least one treatment site with head and neck being most common. APT was mostly performed offline with only two online APT users (plan-library). No centre used online daily re-planning. Daily 3D imaging was used for APT by 19% of users. Sixty-eight percent of users had plans to increase their use or change their technique for APT. The main barrier was "lack of integrated and efficient workflows". Automation and speed, reliable dose deformation for dose accumulation and higher quality of in-room volumetric imaging were identified as the most urgent task for clinical implementation of online daily APT. Conclusion: Offline APT was implemented by the majority of PT centres. Joint efforts between industry research and clinics are needed to translate innovations into efficient and clinically feasible workflows for broad-scale implementation of online APT.

10.
Front Oncol ; 12: 806153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356213

RESUMO

The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.

11.
Med Phys ; 49(6): 3538-3549, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35342943

RESUMO

PURPOSE: The unpredictable interplay between dynamic proton therapy delivery and target motion in the thorax can lead to severe dose distortions. A fraction-wise four-dimensional (4D) dose reconstruction workflow allows for the assessment of the applied dose after patient treatment while considering the actual beam delivery sequence extracted from machine log files, the recorded breathing pattern and the geometric information from a 4D computed tomography scan (4DCT). Such an algorithm capable of accounting for amplitude-sorted 4DCTs was implemented and its accuracy as well as its sensitivity to input parameter variations was experimentally evaluated. METHODS: An anthropomorphic thorax phantom with a movable insert containing a target surrogate and a radiochromic film was irradiated with a monoenergetic field for various 1D target motion forms (sin, sin4 ) and peak-to-peak amplitudes (5/10/15/20/30 mm). The measured characteristic film dose distributions were compared to the respective sections in the 4D reconstructed doses using a 2D γ-analysis (3 mm, 3%); γ-pass rates were derived for different dose grid resolutions (1 mm/3 mm) and deformable image registrations (DIR, automatic/manual) applied during the 4D dose reconstruction process. In an additional analysis, the sensitivity of reconstructed dose distributions against potential asynchronous timing of the motion and machine log files was investigated for both a monoenergetic field and more realistic 4D robustly optimized fields by artificially introduced offsets of ±1/5/25/50/250 ms. The resulting dose distributions with asynchronized log files were compared to those with synchronized log files by means of a 3D γ-analysis (1 mm, 1%) and the evaluation of absolute dose differences. RESULTS: The induced characteristic interplay patterns on the films were well reproduced by the 4D dose reconstruction with 2D γ-pass rates ≥95% for almost all cases with motion magnitudes ≤15 mm. In general, the 2D γ-pass rates showed a significant decrease for larger motion amplitudes and increase when using a finer dose grid resolution but were not affected by the choice of motion form (sin, sin4 ). There was also a trend, though not statistically significant, toward the manually defined DIR for better quality of the reconstructed dose distributions in the area imaged by the film. The 4D dose reconstruction results for the monoenergetic as well as the 4D robustly optimized fields were robust against small asynchronies between motion and machine log files of up to 5 ms, which is in the order of potential network latencies. CONCLUSIONS: We have implemented a 4D log file-based proton dose reconstruction that accounts for amplitude-sorted 4DCTs. Its accuracy was proven to be clinically acceptable for target motion magnitudes of up to 15 mm. Particular attention should be paid to the synchronization of the log file generating systems as the reconstructed dose distribution may vary with log file asynchronies larger than those caused by realistic network delays.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos
12.
Z Med Phys ; 32(1): 74-84, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33248812

RESUMO

PURPOSE: Ventilation-induced tumour motion remains a challenge for the accuracy of proton therapy treatments in lung patients. We investigated the feasibility of using a 4D virtual CT (4D-vCT) approach based on deformable image registration (DIR) and motion-aware 4D CBCT reconstruction (MA-ROOSTER) to enable accurate daily proton dose calculation using a gantry-mounted CBCT scanner tailored to proton therapy. METHODS: Ventilation correlated data of 10 breathing phases were acquired from a porcine ex-vivo functional lung phantom using CT and CBCT. 4D-vCTs were generated by (1) DIR of the mid-position 4D-CT to the mid-position 4D-CBCT (reconstructed with the MA-ROOSTER) using a diffeomorphic Morphons algorithm and (2) subsequent propagation of the obtained mid-position vCT to the individual 4D-CBCT phases. Proton therapy treatment planning was performed to evaluate dose calculation accuracy of the 4D-vCTs. A robust treatment plan delivering a nominal dose of 60Gy was generated on the average intensity image of the 4D-CT for an approximated internal target volume (ITV). Dose distributions were then recalculated on individual phases of the 4D-CT and the 4D-vCT based on the optimized plan. Dose accumulation was performed for 4D-vCT and 4D-CT using DIR of each phase to the mid position, which was chosen as reference. Dose based on the 4D-vCT was then evaluated against the dose calculated on 4D-CT both, phase-by-phase as well as accumulated, by comparing dose volume histogram (DVH) values (Dmean, D2%, D98%, D95%) for the ITV, and by a 3D-gamma index analysis (global, 3%/3mm, 5Gy, 20Gy and 30Gy dose thresholds). RESULTS: Good agreement was found between the 4D-CT and 4D-vCT-based ITV-DVH curves. The relative differences ((CT-vCT)/CT) between accumulated values of ITV Dmean, D2%, D95% and D98% for the 4D-CT and 4D-vCT-based dose distributions were -0.2%, 0.0%, -0.1% and -0.1%, respectively. Phase specific values varied between -0.5% and 0.2%, -0.2% and 0.5%, -3.5% and 1.5%, and -5.7% and 2.3%. The relative difference of accumulated Dmean over the lungs was 2.3% and Dmean for the phases varied between -5.4% and 5.8%. The gamma pass-rates with 5Gy, 20Gy and 30Gy thresholds for the accumulated doses were 96.7%, 99.6% and 99.9%, respectively. Phase-by-phase comparison yielded pass-rates between 86% and 97%, 88% and 98%, and 94% and 100%. CONCLUSIONS: Feasibility of the suggested 4D-vCT workflow using proton therapy specific imaging equipment was shown. Results indicate the potential of the method to be applied for daily 4D proton dose estimation.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Tomografia Computadorizada de Feixe Cônico Espiral , Animais , Galinhas , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Masculino , Imagens de Fantasmas , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Suínos
13.
Radiother Oncol ; 177: 197-204, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368472

RESUMO

PURPOSE: In the Netherlands, oesophageal cancer (EC) patients are selected for intensity modulated proton therapy (IMPT) using the expected normal tissue complication probability reduction (ΔNTCP) when treating with IMPT compared to volumetric modulated arc therapy (VMAT). In this study, we evaluate the robustness of the first EC patients treated with IMPT in our clinic in terms of target and organs-at-risk (OAR) dose with corresponding NTCP, as compared to VMAT. MATERIALS AND METHODS: For 20 consecutive EC patients, clinical IMPT and VMAT plans were created on the average planning 4DCT. Both plans were robustly evaluated on weekly repeated 4DCTs and if target coverage degraded, replanning was performed. Target coverage was evaluated for complete treatment trajectories with and without replanning. The planned and accumulated mean lung dose (MLD) and mean heart dose (MHD) were additionally evaluated and translated into NTCP. RESULTS: Replanning in the clinic was performed more often for IMPT (15x) than would have been needed for VMAT (8x) (p = 0.11). Both adaptive treatments would have resulted in adequate accumulated target dose coverage. Replanning in the first week of treatment had most clinical impact, as anatomical changes resulting in insufficient accumulated target coverage were already observed at this stage. No differences were found in MLD between the planned dose and the accumulated dose. Accumulated MHD differed from the planned dose (p < 0.001), but since these differences were similar for VMAT and IMPT (1.0 and 1.5 Gy, respectively), the ΔNTCP remained unchanged. CONCLUSION: Following an adaptive clinical workflow, adequate target dose coverage and stable OAR doses with corresponding NTCPs was assured for both IMPT and VMAT.


Assuntos
Neoplasias Esofágicas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Prótons , Radioterapia de Intensidade Modulada/métodos , Terapia com Prótons/métodos , Órgãos em Risco , Neoplasias Esofágicas/radioterapia
14.
Med Phys ; 49(11): 6824-6839, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35982630

RESUMO

BACKGROUND: Time-resolved 4D cone beam-computed tomography (4D-CBCT) allows a daily assessment of patient anatomy and respiratory motion. However, 4D-CBCTs suffer from imaging artifacts that affect the CT number accuracy and prevent accurate proton dose calculations. Deep learning can be used to correct CT numbers and generate synthetic CTs (sCTs) that can enable CBCT-based proton dose calculations. PURPOSE: In this work, sparse view 4D-CBCTs were converted into 4D-sCT utilizing a deep convolutional neural network (DCNN). 4D-sCTs were evaluated in terms of image quality and dosimetric accuracy to determine if accurate proton dose calculations for adaptive proton therapy workflows of lung cancer patients are feasible. METHODS: A dataset of 45 thoracic cancer patients was utilized to train and evaluate a DCNN to generate 4D-sCTs, based on sparse view 4D-CBCTs reconstructed from projections acquired with a 3D acquisition protocol. Mean absolute error (MAE) and mean error were used as metrics to evaluate the image quality of single phases and average 4D-sCTs against 4D-CTs acquired on the same day. The dosimetric accuracy was checked globally (gamma analysis) and locally for target volumes and organs-at-risk (OARs) (lung, heart, and esophagus). Furthermore, 4D-sCTs were also compared to 3D-sCTs. To evaluate CT number accuracy, proton radiography simulations in 4D-sCT and 4D-CTs were compared in terms of range errors. The clinical suitability of 4D-sCTs was demonstrated by performing a 4D dose reconstruction using patient specific treatment delivery log files and breathing signals. RESULTS: 4D-sCTs resulted in average MAEs of 48.1 ± 6.5 HU (single phase) and 37.7 ± 6.2 HU (average). The global dosimetric evaluation showed gamma pass ratios of 92.3% ± 3.2% (single phase) and 94.4% ± 2.1% (average). The clinical target volume showed high agreement in D98 between 4D-CT and 4D-sCT, with differences below 2.4% for all patients. Larger dose differences were observed in mean doses of OARs (up to 8.4%). The comparison with 3D-sCTs showed no substantial image quality and dosimetric differences for the 4D-sCT average. Individual 4D-sCT phases showed slightly lower dosimetric accuracy. The range error evaluation revealed that lung tissues cause range errors about three times higher than the other tissues. CONCLUSION: In this study, we have investigated the accuracy of deep learning-based 4D-sCTs for daily dose calculations in adaptive proton therapy. Despite image quality differences between 4D-sCTs and 3D-sCTs, comparable dosimetric accuracy was observed globally and locally. Further improvement of 3D and 4D lung sCTs could be achieved by increasing CT number accuracy in lung tissues.


Assuntos
Aprendizado Profundo , Terapia com Prótons , Humanos , Prótons , Coração
15.
Int J Radiat Oncol Biol Phys ; 112(2): 463-474, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530091

RESUMO

PURPOSE: In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. METHODS AND MATERIALS: For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). RESULTS: The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (≥94% of the dose in 98% of the volume [D98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D98%: IMPT 94% ± 5%, VMAT 96% ± 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. CONCLUSIONS: PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging.


Assuntos
Neoplasias Esofágicas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Diafragma/diagnóstico por imagem , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Humanos , Órgãos em Risco/diagnóstico por imagem , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
16.
Radiother Oncol ; 169: 77-85, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189152

RESUMO

4D multi-image-based (4DMIB) optimization is a form of robust optimization where different uncertainty scenarios, due to anatomy variations, are considered via multiple image sets (e.g., 4DCT). In this review, we focused on providing an overview of different 4DMIB optimization implementations, introduced various frameworks to evaluate the robustness of scanned particle therapy affected by breathing motion and summarized the existing evidence on the necessity of using 4DMIB optimization clinically. Expected potential benefits of 4DMIB optimization include more robust and/or interplay-effect-resistant doses for the target volume and organs-at-risk for indications affected by anatomical variations (e.g., breathing, peristalsis, etc.). Although considerable literature is available on the research and technical aspects of 4DMIB, clinical studies are rare and often contain methodological limitations, such as, limited patient number, motion amplitude, motion and delivery time structure considerations, number of repeat CTs, etc. Therefore, the data are not conclusive. In addition, multiple studies have found that robust 3D optimized plans result in dose distributions within the set clinical tolerances and, therefore, are suitable for a treatment of moving targets with scanned particle therapy. We, therefore, consider the clinical necessity of 4DMIB optimization, when treating moving targets with scanned particle therapy, as still to be demonstrated.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Tomografia Computadorizada Quadridimensional/métodos , Humanos , Movimento (Física) , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração
17.
Med Phys ; 48(3): 1372-1380, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33428795

RESUMO

PURPOSE: The capability of proton therapy to provide highly conformal dose distributions is impaired by range uncertainties. The aim of this work is to apply range probing (RP), a form of a proton radiography-based quality control (QC) procedure for range accuracy assessment in head and neck cancer (HNC) patients in a clinical setting. METHODS AND MATERIALS: This study included seven HNC patients. RP acquisition was performed using a multi-layer ionization chamber (MLIC). Per patient, two RP frames were acquired within the first two weeks of treatment, on days when a repeated CT scan was obtained. Per RP frame, integral depth dose (IDD) curves of 81 spots around the treatment isocenter were acquired. Range errors are determined as a discrepancy between calculated IDDs in the treatment planning system and measured residual ranges by the MLIC. Range errors are presented relative to the water equivalent path length of individual proton spots. In addition to reporting results for complete measurement frames, an analysis, excluding range error contributions due to anatomical changes, is presented. RESULTS: Discrepancies between measured and calculated ranges are smaller when performing RP calculations on the day-specific patient anatomy rather than the planning CT. The patient-specific range evaluation shows an agreement between calculated and measured ranges for spots in anatomically consistent areas within 3% (1.5 standard deviation). CONCLUSIONS: The results of an RP-based QC procedure implemented in the clinical practice for HNC patients have been demonstrated. The agreement of measured and simulated proton ranges confirms the 3% uncertainty margin for robust optimization. Anatomical variations show a predominant effect on range accuracy, motivating efforts towards the implementation of adaptive radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imagens de Fantasmas , Prótons , Controle de Qualidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
18.
Phys Med Biol ; 66(21)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34598170

RESUMO

OBJECTIVE: Proton range uncertainties can compromise the effectiveness of proton therapy treatments. Water equivalent path length (WEPL) assessment by flat panel detector proton radiography (FP-PR) can provide means of range uncertainty detection. Since WEPL accuracy intrinsically relies on the FP-PR calibration parameters, the purpose of this study is to establish an optimal calibration procedure that ensures high accuracy of WEPL measurements. To that end, several calibration settings were investigated. APPROACH: FP-PR calibration datasets were obtained simulating PR fields with different proton energies, directed towards water-equivalent material slabs of increasing thickness. The parameters investigated were the spacing between energy layers (ΔE) and the increment in thickness of the water-equivalent material slabs (ΔX) used for calibration. 30 calibrations were simulated, as a result of combining ΔE = 9, 7, 5, 3, 1 MeV and ΔX = 10, 8, 5, 3, 2, 1 mm. FP-PRs through a CIRS electron density phantom were simulated, and WEPL images corresponding to each calibration were obtained. Ground truth WEPL values were provided by range probing multi-layer ionization chamber simulations on each insert of the phantom. Relative WEPL errors between FP-PR simulations and ground truth were calculated for each insert. Mean relative WEPL errors and standard deviations across all inserts were computed for WEPL images obtained with each calibration. MAIN RESULTS: Large mean and standard deviations were found in WEPL images obtained with large ΔEvalues (ΔE = 9 or 7 MeV), for any ΔX. WEPL images obtained with ΔE ≤ 5 MeV and ΔX ≤ 5 mm resulted in a WEPL accuracy with mean values within ±0.5% and standard deviations around 1%. SIGNIFICANCE: An optimal FP calibration in the framework of this study was established, characterized by 3 MeV ≤ ΔE ≤ 5 MeV and 2 mm ≤ ΔX ≤ 5 mm. Within these boundaries, highly accurate WEPL acquisitions using FP-PR are feasible and practical, holding the potential to assist future online range verification quality control procedures.


Assuntos
Terapia com Prótons , Calibragem , Imagens de Fantasmas , Prótons , Radiografia , Água
19.
Phys Med Biol ; 66(10)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33862616

RESUMO

Deformable image registration (DIR) is an important component for dose accumulation and associated clinical outcome evaluation in radiotherapy. However, the resulting deformation vector field (DVF) is subject to unavoidable discrepancies when different algorithms are applied, leading to dosimetric uncertainties of the accumulated dose. We propose here an approach for proton therapy to estimate dosimetric uncertainties as a consequence of modeled or estimated DVF uncertainties. A patient-specific DVF uncertainty model was built on the first treatment fraction, by correlating the magnitude differences of five DIR results at each voxel to the magnitude of any single reference DIR. In the following fractions, only the reference DIR needs to be applied, and DVF geometric uncertainties were estimated by this model. The associated dosimetric uncertainties were then derived by considering the estimated geometric DVF uncertainty, the dose gradient of fractional recalculated dose distribution and the direction factor from the applied reference DIR of this fraction. This estimated dose uncertainty was respectively compared to the reference dose uncertainty when different DIRs were applied individually for each dose warping. This approach was validated on seven NSCLC patients, each with nine repeated CTs. The proposed model-based method is able to achieve dose uncertainty distribution on a conservative voxel-to-voxel comparison within ±5% of the prescribed dose to the 'reference' dosimetric uncertainty, for 77% of the voxels in the body and 66%-98% of voxels in investigated structures. We propose a method to estimate DIR induced uncertainties in dose accumulation for proton therapy of lung tumor treatments.


Assuntos
Neoplasias Pulmonares , Terapia com Prótons , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Incerteza
20.
Med Phys ; 48(8): 4498-4505, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34077554

RESUMO

PURPOSE: Cone-beam CT (CBCT)-based synthetic CTs (sCT) produced with a deep convolutional neural network (DCNN) show high image quality, suggesting their potential usability in adaptive proton therapy workflows. However, the nature of such workflows involving DCNNs prevents the user from having direct control over their output. Therefore, quality control (QC) tools that monitor the sCTs and detect failures or outliers in the generated images are needed. This work evaluates the potential of using a range-probing (RP)-based QC tool to verify sCTs generated by a DCNN. Such a RP QC tool experimentally assesses the CT number accuracy in sCTs. METHODS: A RP QC dataset consisting of repeat CTs (rCT), CBCTs, and RP acquisitions of seven head and neck cancer patients was retrospectively assessed. CBCT-based sCTs were generated using a DCNN. The CT number accuracy in the sCTs was evaluated by computing relative range errors between measured RP fields and RP field simulations based on rCT and sCT images. RESULTS: Mean relative range errors showed agreement between measured and simulated RP fields, ranging from -1.2% to 1.5% in rCTs, and from -0.7% to 2.7% in sCTs. CONCLUSIONS: The agreement between measured and simulated RP fields suggests the suitability of sCTs for proton dose calculations. This outcome brings sCTs generated by DCNNs closer toward clinical implementation within adaptive proton therapy treatment workflows. The proposed RP QC tool allows for CT number accuracy assessment in sCTs and can provide means of in vivo range verification.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Processamento de Imagem Assistida por Computador , Controle de Qualidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA