Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 233(4): 1560-1596, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34657301

RESUMO

Generalised dose-response curves are essential to understand how plants acclimate to atmospheric CO2 . We carried out a meta-analysis of 630 experiments in which C3 plants were experimentally grown at different [CO2 ] under relatively benign conditions, and derived dose-response curves for 85 phenotypic traits. These curves were characterised by form, plasticity, consistency and reliability. Considered over a range of 200-1200 µmol mol-1 CO2 , some traits more than doubled (e.g. area-based photosynthesis; intrinsic water-use efficiency), whereas others more than halved (area-based transpiration). At current atmospheric [CO2 ], 64% of the total stimulation in biomass over the 200-1200 µmol mol-1 range has already been realised. We also mapped the trait responses of plants to [CO2 ] against those we have quantified before for light intensity. For most traits, CO2 and light responses were of similar direction. However, some traits (such as reproductive effort) only responded to light, others (such as plant height) only to [CO2 ], and some traits (such as area-based transpiration) responded in opposite directions. This synthesis provides a comprehensive picture of plant responses to [CO2 ] at different integration levels and offers the quantitative dose-response curves that can be used to improve global change simulation models.


Assuntos
Dióxido de Carbono , Folhas de Planta , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Plantas , Reprodutibilidade dos Testes
2.
Front Plant Sci ; 14: 1304751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259917

RESUMO

In the context of climate change and global sustainable development goals, future wheat cultivation has to master various challenges at a time, including the rising atmospheric carbon dioxide concentration ([CO2]). To investigate growth and photosynthesis dynamics under the effects of ambient (~434 ppm) and elevated [CO2] (~622 ppm), a Free-Air CO2 Enrichment (FACE) facility was combined with an automated phenotyping platform and an array of sensors. Ten modern winter wheat cultivars (Triticum aestivum L.) were monitored over a vegetation period using a Light-induced Fluorescence Transient (LIFT) sensor, ground-based RGB cameras and a UAV equipped with an RGB and multispectral camera. The LIFT sensor enabled a fast quantification of the photosynthetic performance by measuring the operating efficiency of Photosystem II (Fq'/Fm') and the kinetics of electron transport, i.e. the reoxidation rates Fr1' and Fr2'. Our results suggest that elevated [CO2] significantly increased Fq'/Fm' and plant height during the vegetative growth phase. As the plants transitioned to the senescence phase, a pronounced decline in Fq'/Fm' was observed under elevated [CO2]. This was also reflected in the reoxidation rates Fr1' and Fr2'. A large majority of the cultivars showed a decrease in the harvest index, suggesting a different resource allocation and indicating a potential plateau in yield progression under e[CO2]. Our results indicate that the rise in atmospheric [CO2] has significant effects on the cultivation of winter wheat with strong manifestation during early and late growth.

3.
Nat Food ; 4(10): 854-865, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37845546

RESUMO

Air pollution and climate change are tightly interconnected and jointly affect field crop production and agroecosystem health. Although our understanding of the individual and combined impacts of air pollution and climate change factors is improving, the adaptation of crop production to concurrent air pollution and climate change remains challenging to resolve. Here we evaluate recent advances in the adaptation of crop production to climate change and air pollution at the plant, field and ecosystem scales. The main approaches at the plant level include the integration of genetic variation, molecular breeding and phenotyping. Field-level techniques include optimizing cultivation practices, promoting mixed cropping and diversification, and applying technologies such as antiozonants, nanotechnology and robot-assisted farming. Plant- and field-level techniques would be further facilitated by enhancing soil resilience, incorporating precision agriculture and modifying the hydrology and microclimate of agricultural landscapes at the ecosystem level. Strategies and opportunities for crop production under climate change and air pollution are discussed.


Assuntos
Poluição do Ar , Ecossistema , Mudança Climática , Produtos Agrícolas/genética , Produção Agrícola
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA