Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31969434

RESUMO

Low-pathogenicity avian influenza (LPAI) viruses of subtypes H5 and H7 have the ability to spontaneously mutate to highly pathogenic (HPAI) virus variants, causing high mortality in poultry. The highly pathogenic phenotype is caused by mutation of the hemagglutinin (HA) cleavage site, but additional mutations may play a role. Evidence from the field for the switch to high pathogenicity remains scarce. This study provides direct evidence for LPAI-to-HPAI virus mutation during H7N3 infection of a turkey farm in the Netherlands. No severe clinical symptoms were reported at the farm, but deep sequencing of isolates from the infected turkeys revealed a minority of HPAI virus sequences (0.06%) in the virus population. The HPAI virus contained a 12-nucleotide insertion in the HA cleavage site that was likely introduced by a single event as no intermediates with shorter inserts were identified. This suggests nonhomologous recombination as the mechanism of insertion. Analysis of different organs of the infected turkeys showed the largest amount of HPAI virus in the lung (4.4%). The HPAI virus was rapidly selected in experimentally infected chickens after both intravenous and intranasal/intratracheal inoculation with a mixed virus preparation. Full-genome sequencing revealed that both pathotypes contained a deletion in the stalk region of the neuraminidase protein. We identified additional mutations in HA and polymerase basic protein 1 (PB1) in the HPAI virus, which were already present as minority variants in the LPAI virus population. Our findings provide more insight into the molecular changes and mechanisms involved in the emergence and selection of HPAI viruses.IMPORTANCE Low-pathogenicity avian influenza (LPAI) viruses circulate in wild birds and can be transmitted to poultry. LPAI viruses can mutate to become highly pathogenic avian influenza (HPAI) viruses causing severe disease and death in poultry. Little is known about this switch to high pathogenicity. We isolated an LPAI H7N3 virus from an infected turkey farm and showed that this contains small amounts of HPAI virus. The HPAI virus rapidly outcompeted the LPAI virus in chickens that were experimentally infected with this mixture of viruses. We analyzed the genome sequences of the LPAI and HPAI viruses and identified several changes that may be important for a virus to become highly pathogenic. This knowledge may be used for timely identification of LPAI viruses that pose a risk of becoming highly pathogenic in the field.


Assuntos
Vírus da Influenza A Subtipo H7N3/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Animais Selvagens/virologia , Galinhas/virologia , Modelos Animais de Doenças , Variação Genética , Hemaglutininas/genética , Vírus da Influenza A Subtipo H7N3/genética , Influenza Aviária/patologia , Influenza Aviária/transmissão , Pulmão/patologia , Mutação , Países Baixos , Aves Domésticas , Doenças das Aves Domésticas/patologia , RNA Viral/química , RNA Viral/genética , Baço/patologia , Perus/virologia
2.
Methods ; 158: 54-60, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707951

RESUMO

Avian influenza (AI) is an infectious disease in birds with enormous impact on the poultry sector. AI viruses are divided into different subtypes based on the antigenicity of their surface proteins haemagglutinin (HA) and neuraminidases (NA). In birds, 16 HA subtypes and 9 NA subtypes are detected in different combinations. Traditional serological methods for the subtyping of AI antibodies are labour-intensive and have to be performed for each HA and NA subtype separately. This study describes the development of a multiplex serological assay for subtyping AI antibodies in poultry sera using Luminex xMAP technology. This multiplex assay allows the detection of all AI serotypes in one single assay. For all HA and NA subtypes, recombinant proteins were purified and coupled to colour-coded magnetic bead sets. Using the Luminex MAGPIX device, binding of serum antibodies to the antigens on the bead sets is detected by fluorescent secondary antibodies, and the different bead sets are identified. The results of the multiplex assay were compared with that of the traditional singleplex assays. We show that serotyping using the novel multiplex serological assay is consistent with the results of the traditional assays in 97.8% of the reference sera and in 90.8% of the field sera. The assay has a higher sensitivity than the traditional assays, and requires a smaller sample volume. Therefore, the assay will allow complete AI-serotyping in small volumes of field sera, which will improve the monitoring of AI subtypes circulating in poultry significantly.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Vírus da Influenza A/classificação , Influenza Aviária/diagnóstico , Doenças das Aves Domésticas/diagnóstico , Sorotipagem/métodos , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Galinhas/virologia , Ensaios de Triagem em Larga Escala/instrumentação , Vírus da Influenza A/imunologia , Influenza Aviária/sangue , Influenza Aviária/imunologia , Influenza Aviária/virologia , Microesferas , Países Baixos , Doenças das Aves Domésticas/sangue , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Sorotipagem/instrumentação
3.
Emerg Infect Dis ; 25(3): 465-472, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30789142

RESUMO

Highly pathogenic avian influenza (HPAI) A(H5N1) viruses have been circulating since 2003 in Indonesia, with major impacts on poultry health, severe economic losses, and 168 fatal laboratory-confirmed human cases. We performed phylogenetic analysis on 39 full-genome H5N1 virus samples collected during outbreaks among poultry in 2015-2016 in West Java and compared them with recently published sequences from Indonesia. Phylogenetic analysis revealed that the hemagglutinin gene of all samples belonged to 2 genetic groups in clade 2.3.2.1c. We also observed these groups for the neuraminidase, nucleoprotein, polymerase, and polymerase basic 1 genes. Matrix, nonstructural protein, and polymerase basic 2 genes of some HPAI were most closely related to clade 2.1.3 instead of clade 2.3.2.1c, and a polymerase basic 2 gene was most closely related to Eurasian low pathogenicity avian influenza. Our results detected a total of 13 reassortment types among HPAI in Indonesia, mostly in backyard chickens in Indramayu.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Vírus Reordenados/genética , Sequência de Aminoácidos , Animais , Surtos de Doenças , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Indonésia/epidemiologia , Virus da Influenza A Subtipo H5N1/classificação , Filogenia , Aves Domésticas , Vigilância em Saúde Pública , Vírus Reordenados/classificação , Análise de Sequência de DNA
4.
Emerg Infect Dis ; 24(4)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29381134

RESUMO

A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

5.
Emerg Infect Dis ; 23(12): 1974-1981, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29148396

RESUMO

In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird and poultry viruses. Phylogenetic analysis showed that the viruses are related to H5 clade 2.3.4.4 viruses detected in Russia in May 2016 but contained novel polymerase basic 2 and nucleoprotein gene segments and 2 different variants of the polymerase acidic segment. Molecular dating suggests that the reassortment events most likely occurred in wild birds in Russia or Mongolia. Furthermore, 2 genetically distinct H5N5 reassortant viruses were detected in wild birds in the Netherlands. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, which might lead to rapid changes in virus characteristics, such as pathogenicity, infectivity, transmission, and zoonotic potential.


Assuntos
Surtos de Doenças , Genoma Viral , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Filogenia , Vírus Reordenados/genética , Animais , Animais Selvagens , Aves/virologia , Expressão Gênica , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/patologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mongólia/epidemiologia , Países Baixos/epidemiologia , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Aves Domésticas/virologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Federação Russa/epidemiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequenciamento Completo do Genoma
6.
Emerg Infect Dis ; 21(5): 872-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25897965

RESUMO

Genetic analyses of highly pathogenic avian influenza A(H5N8) virus from the Netherlands, and comparison with strains from Europe, South Korea, and Japan, showed a close relation. Data suggest the strains were probably carried to the Netherlands by migratory wild birds from Asia, possibly through overlapping flyways and common breeding sites in Siberia.


Assuntos
Genoma Viral , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Aves Domésticas , Animais , Animais Selvagens , Ásia/epidemiologia , Surtos de Doenças , História do Século XXI , Influenza Aviária/história , Países Baixos/epidemiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , RNA Viral , Análise de Sequência de DNA
7.
J Infect Dis ; 207(5): 730-5, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23230058

RESUMO

Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H7N7/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , Vento , Animais , Vírus da Influenza A Subtipo H7N7/genética , Influenza Aviária/virologia , Epidemiologia Molecular , Países Baixos/epidemiologia , Aves Domésticas , Doenças das Aves Domésticas/virologia , RNA Viral/genética
8.
PLoS Pathog ; 7(6): e1002094, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731491

RESUMO

Phylogenetic studies have largely contributed to better understand the emergence, spread and evolution of highly pathogenic avian influenza during epidemics, but sampling of genetic data has never been detailed enough to allow mapping of the spatiotemporal spread of avian influenza viruses during a single epidemic. Here, we present genetic data of H7N7 viruses produced from 72% of the poultry farms infected during the 2003 epidemic in the Netherlands. We use phylogenetic analyses to unravel the pathways of virus transmission between farms and between infected areas. In addition, we investigated the evolutionary processes shaping viral genetic diversity, and assess how they could have affected our phylogenetic analyses. Our results show that the H7N7 virus was characterized by a high level of genetic diversity driven mainly by a high neutral substitution rate, purifying selection and limited positive selection. We also identified potential reassortment in the three genes that we have tested, but they had only a limited effect on the resolution of the inter-farm transmission network. Clonal sequencing analyses performed on six farm samples showed that at least one farm sample presented very complex virus diversity and was probably at the origin of chronological anomalies in the transmission network. However, most virus sequences could be grouped within clearly defined and chronologically sound clusters of infection and some likely transmission events between farms located 0.8-13 Km apart were identified. In addition, three farms were found as most likely source of virus introduction in distantly located new areas. These long distance transmission events were likely facilitated by human-mediated transport, underlining the need for strict enforcement of biosafety measures during outbreaks. This study shows that in-depth genetic analysis of virus outbreaks at multiple scales can provide critical information on virus transmission dynamics and can be used to increase our capacity to efficiently control epidemics.


Assuntos
Evolução Biológica , Epidemias , Vírus da Influenza A Subtipo H7N7/genética , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Animais , Animais Domésticos/virologia , Variação Genética , Humanos , Países Baixos/epidemiologia , Filogenia , Aves Domésticas , Análise de Sequência de RNA
9.
J Virol ; 85(20): 10598-604, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21849451

RESUMO

Although increasing data have become available that link human adaptation with specific molecular changes in nonhuman influenza viruses, the molecular changes of these viruses during a large highly pathogenic avian influenza virus (HPAI) outbreak in poultry along with avian-to-human transmission have never been documented. By comprehensive virologic analysis of combined veterinary and human samples obtained during a large HPAI A (H7N7) outbreak in the Netherlands in 2003, we mapped the acquisition of human adaptation markers to identify the public health risk associated with an HPAI outbreak in poultry. Full-length hemagglutinin (HA), neuraminidase (NA), and PB2 sequencing of A (H7N7) viruses obtained from 45 human cases showed amino acid variations at different codons in HA (n=20), NA (n=23), and PB2 (n=23). Identification of the avian sources of human virus infections based on 232 farm sequences demonstrated that for each gene about 50% of the variation was already present in poultry. Polygenic accumulation and farm-to-farm spread of known virulence and human adaptation markers in A (H7N7) virus-infected poultry occurred prior to farm-to-human transmission. These include the independent emergence of HA A143T mutants, accumulation of four NA mutations, and farm-to-farm spread of virus variants harboring mammalian host determinants D701N and S714I in PB2. This implies that HPAI viruses with pandemic potential can emerge directly from poultry. Since the public health risk of an avian influenza virus outbreak in poultry can rapidly change, we recommend virologic monitoring for human adaptation markers among poultry as well as among humans during the course of an outbreak in poultry.


Assuntos
Surtos de Doenças , Variação Genética , Vírus da Influenza A Subtipo H7N7/classificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Substituição de Aminoácidos , Animais , Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/isolamento & purificação , Mutação de Sentido Incorreto , Países Baixos/epidemiologia , Neuraminidase/genética , Aves Domésticas , RNA Polimerase Dependente de RNA/genética , Análise de Sequência de DNA , Proteínas Virais/genética , Virulência
10.
Viruses ; 14(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36298771

RESUMO

After its first detection in 1996, the highly pathogenic avian influenza A(H5Nx) virus has spread extensively worldwide. HPAIv A(H5N1) was first detected in Indonesia in 2003 and has been endemic in poultry in this country ever since. However, Indonesia has limited information related to the phylodynamics of HPAIv A(H5N1) in poultry. The present study aimed to increase the understanding of the evolution and temporal dynamics of HPAIv H5N1 in Indonesian poultry between 2003 and 2016. To this end, HPAIv A(H5N1) hemagglutinin sequences of viruses collected from 2003 to 2016 were analyzed using Bayesian evolutionary analysis sampling trees. Results indicated that the common ancestor of Indonesian poultry HPAIv H5N1 arose approximately five years after the common ancestor worldwide of HPAI A(H5Nx). In addition, this study indicated that only two introductions of HPAIv A(H5N1) occurred, after which these viruses continued to evolve due to extensive spread among poultry. Furthermore, this study revealed the divergence of H5N1 clade 2.3.2.1c from H5N1 clade 2.3.2.1b. Both clades 2.3.2.1c and 2.3.2.1b share a common ancestor, clade 1, suggesting that clade 2.3.2.1 originated and diverged from China and other Asian countries. Since there was limited sequence and surveillance data for the HPAIv A(H5N1) from wild birds in Indonesia, the exact role of wild birds in the spread of HPAIv in Indonesia is currently unknown. The evolutionary dynamics of the Indonesian HPAIv A(H5N1) highlight the importance of continuing and improved genomic surveillance and adequate control measures in the different regions of both the poultry and wild birds. Spatial genomic surveillance is useful to take adequate control measures. Therefore, it will help to prevent the future evolution of HPAI A(H5N1) and pandemic threats.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Virus da Influenza A Subtipo H5N1/genética , Aves Domésticas , Indonésia/epidemiologia , Teorema de Bayes , Hemaglutininas , Filogenia , Aves , Doenças das Aves Domésticas/epidemiologia
11.
PLoS Pathog ; 5(1): e1000281, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19180190

RESUMO

Despite considerable research efforts, little is yet known about key epidemiological parameters of H5N1 highly pathogenic influenza viruses in their avian hosts. Here we show how these parameters can be estimated using a limited number of birds in experimental transmission studies. Our quantitative estimates, based on Bayesian methods of inference, reveal that (i) the period of latency of H5N1 influenza virus in unvaccinated chickens is short (mean: 0.24 days; 95% credible interval: 0.099-0.48 days); (ii) the infectious period of H5N1 virus in unvaccinated chickens is approximately 2 days (mean: 2.1 days; 95%CI: 1.8-2.3 days); (iii) the reproduction number of H5N1 virus in unvaccinated chickens need not be high (mean: 1.6; 95%CI: 0.90-2.5), although the virus is expected to spread rapidly because it has a short generation interval in unvaccinated chickens (mean: 1.3 days; 95%CI: 1.0-1.5 days); and (iv) vaccination with genetically and antigenically distant H5N2 vaccines can effectively halt transmission. Simulations based on the estimated parameters indicate that herd immunity may be obtained if at least 80% of chickens in a flock are vaccinated. We discuss the implications for the control of H5N1 avian influenza virus in areas where it is endemic.


Assuntos
Galinhas , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/imunologia , Influenza Aviária/transmissão , Vacinação/veterinária , Animais , Teorema de Bayes , Simulação por Computador , Imunidade Coletiva , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/epidemiologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Latência Viral
12.
Vet Res ; 42: 74, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21635732

RESUMO

Vaccination of chickens has become routine practice in Asian countries in which H5N1 highly pathogenic avian influenza (HPAI) is endemically present. This mainly applies to layer and breeder flocks, but broilers are usually left unvaccinated. Here we investigate whether vaccination is able to reduce HPAI H5N1 virus transmission among broiler chickens. Four sets of experiments were carried out, each consisting of 22 replicate trials containing a pair of birds. Experiments 1-3 were carried out with four-week-old birds that were unvaccinated, and vaccinated at day 1 or at day 10 of age. Experiment 4 was carried out with unvaccinated day-old broiler chicks. One chicken in each trial was inoculated with H5N1 HPAI virus. One chicken in each trial was inoculated with virus. The course of the infection chain was monitored by serological analysis, and by virus isolation performed on tracheal and cloacal swabs. The analyses were based on a stochastic SEIR model using a Bayesian inferential framework. When inoculation was carried out at the 28th day of life, transmission was efficient in unvaccinated birds, and in birds vaccinated at first or tenth day of life. In these experiments estimates of the latent period (~1.0 day), infectious period (~3.3 days), and transmission rate parameter (~1.4 per day) were similar, as were estimates of the reproduction number (~4) and generation interval (~1.4 day). Transmission was significantly less efficient in unvaccinated chickens when inoculation was carried out on the first day of life. These results show that vaccination of broiler chickens does not reduce transmission, and suggest that this may be due to the interference of maternal immunity.


Assuntos
Galinhas , Virus da Influenza A Subtipo H5N1/fisiologia , Vacinas contra Influenza/administração & dosagem , Influenza Aviária/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Vacinação/veterinária , Animais , Teorema de Bayes , Cloaca/virologia , Testes de Inibição da Hemaglutinação/veterinária , Indonésia , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Modelos Biológicos , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Traqueia/virologia
13.
Vet Res ; 42: 122, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195547

RESUMO

In the last decade many studies have been performed on the virulence of Newcastle disease virus (NDV). This is mainly due to the development of reverse genetics systems which made it possible to genetically modify NDV and to investigate the contribution of individual genes and genome regions to its virulence. However, the available information is scattered and a comprehensive overview of the factors and conditions determining NDV virulence is lacking. This review summarises, compares and discusses the available literature and shows that virulence of NDV is a complex trait determined by multiple genetic factors.


Assuntos
Galinhas , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/patogenicidade , Doenças das Aves Domésticas/virologia , Fatores de Virulência/genética , Animais , Vírus da Doença de Newcastle/genética , Virulência
14.
Sci Rep ; 10(1): 12388, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709965

RESUMO

The estimation of farm-specific time windows for the introduction of highly-pathogenic avian influenza (HPAI) virus can be used to increase the efficiency of disease control measures such as contact tracing and may help to identify risk factors for virus introduction. The aims of this research are to (1) develop and test an accurate approach for estimating farm-specific virus introduction windows and (2) evaluate this approach by applying it to 11 outbreaks of HPAI (H5N8) on Dutch commercial poultry farms during the years 2014 and 2016. We used a stochastic simulation model with susceptible, infectious and recovered/removed disease stages to generate distributions for the period from virus introduction to detection. The model was parameterized using data from the literature, except for the within-flock transmission rate, which was estimated from disease-induced mortality data using two newly developed methods that describe HPAI outbreaks using either a deterministic model (A) or a stochastic approach (B). Model testing using simulated outbreaks showed that both method A and B performed well. Application to field data showed that method A could be successfully applied to 8 out of 11 HPAI H5N8 outbreaks and is the most generally applicable one, when data on disease-induced mortality is scarce.


Assuntos
Influenza Aviária/epidemiologia , Aves Domésticas/virologia , Animais , Surtos de Doenças , Fazendas , Influenza Aviária/mortalidade , Influenza Aviária/transmissão , Modelos Estatísticos , Fatores de Tempo
15.
Prev Vet Med ; 88(4): 278-85, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19178968

RESUMO

To optimize control of an avian influenza outbreak knowledge of within-flock transmission is needed. This study used field data to estimate the transmission rate parameter (beta) and the influence of risk factors on within-flock transmission of highly pathogenic avian influenza (HPAI) H7N7 virus in the 2003 epidemic in The Netherlands. The estimation is based on back-calculation of daily mortality data to fit a susceptible-infectious-dead format, and these data were analysed with a generalized linear model. This back-calculation method took into account the uncertainty of the length of the latent period, the survival of an infection by some birds and the influence of farm characteristics. After analysing the fit of the different databases created by back-calculation, it could be concluded that an absence of the latency period provided the best fit. The transmission rate parameter (beta) from these field data was estimated at 4.50 per infectious chicken per day (95% CI: 2.68-7.57), which was lower than what was reported from experimental data. In contrast to general belief, none of the studied risk factors (housing system, flock size, species, age of the birds in weeks and date of depopulation) had significant influence on the estimated beta.


Assuntos
Galinhas , Abrigo para Animais , Vírus da Influenza A Subtipo H7N7 , Influenza Aviária/transmissão , Perus , Fatores Etários , Animais , Surtos de Doenças/veterinária , Feminino , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Influenza Aviária/prevenção & controle , Masculino , Mortalidade , Países Baixos/epidemiologia , Densidade Demográfica , Fatores de Risco , Vigilância de Evento Sentinela/veterinária
17.
Microorganisms ; 7(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500141

RESUMO

Knowledge of outbreaks and associated risk factors is helpful to improve control of the Highly Pathogenic Avian Influenza A(H5N1) virus (HPAI) in Indonesia. This study was conducted to detect outbreaks of HPAI H5N1 in endemically infected regions by enhanced passive surveillance, to describe the clinical manifestation of these outbreaks and identify associated risk factors. From November 2015 to November 2016, HPAI outbreak investigations were conducted in seven districts of West Java. In total 64 outbreaks were confirmed out of 75 reported suspicions and outbreak characteristics were recorded. The highest mortality was reported in backyard chickens (average 59%, CI95%: 49-69%). Dermal apoptosis and lesions (64%, CI95%: 52-76%) and respiratory signs (39%, CI95%: 27-51%) were the clinical signs observed overall most frequently, while neurological signs were most frequently observed in ducks (68%, CI95%: 47-90%). In comparison with 60 non-infected control farms, the rate of visitor contacts onto a farm was associated with the odds of HPAI infection. Moreover, duck farms had higher odds of being infected than backyard farms, and larger farms had lower odds than small farms. Results indicate that better external biosecurity is needed to reduce transmission of HPAI A(H5N1) in Indonesia.

19.
Vet J ; 232: 20-22, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29428086

RESUMO

The transmissibility of the H7N1 highly pathogenic avian influenza virus (HPAIV), which caused a large epidemic in commercial poultry in Italy in 1999-2000, was studied in chickens and compared with that of the low pathogenic precursor virus (LPAIV). Group transmission experiments using the HPAIV were executed to estimate the infectious period (IP), the transmission parameter (ß) and the basic reproduction number (R0). These estimates were then compared with those reported for the LPAIV. The estimated ß and R0 were similar for both viruses, whilst the IP of the LPAIV was longer than that of the HPAIV. These findings indicate that transmissibility from chicken-to-chicken alone does not appear to confer an advantage for this LPAIV to evolve to a HPAIV.


Assuntos
Galinhas/virologia , Vírus da Influenza A Subtipo H7N1/patogenicidade , Vírus da Influenza A/patogenicidade , Influenza Aviária/transmissão , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Influenza Aviária/epidemiologia , Itália/epidemiologia
20.
Prev Vet Med ; 156: 8-15, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29891149

RESUMO

Highly pathogenic avian influenza virus (HPAIV) H5N1 has been reported in Asia, including Indonesia since 2003. Although several risk factors related to the HPAIV outbreaks in poultry in Indonesia have been identified, little is known of the contact structure of farms of different poultry production types (backyard chickens, broilers, layers, and ducks). This study aims to quantify the contact rates associated with the movement of people, and movements of live birds and products and equipment that affect the risk of HPAIV H5N1 transmission between poultry farms in Indonesia. On 124 poultry farms in 6 districts in West Java, logbooks were distributed to record the movements of farmers/staff and visitors and their poultry contacts. Most movements in backyard chicken, commercial native chicken, broiler and duck farms were visits to and from other poultry farms, whilst in layer farms visits to and from poultry companies, visits to egg collection houses and visit from other poultry farms were most frequent. Over 75% of persons visiting backyard chicken and duck farms had previously visited other poultry farms on the same day. Visitors of backyard chicken farms had the highest average contact rate, either direct contact with poultry on other farms before the visits (1.35 contact/day) or contact during their visits in the farms (10.03 contact/day). These results suggest that backyard chicken farms are most at risk for transmission of HPAIV compared to farms of the other poultry production types. Since visits of farm-to-farm were high, backyard farms could also a potential source for HPAIV transmission to commercial poultry farms.


Assuntos
Fazendas , Virus da Influenza A Subtipo H5N1 , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Doenças das Aves Domésticas/transmissão , Aves Domésticas/virologia , Animais , Galinhas , Surtos de Doenças , Humanos , Indonésia , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA