Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16158, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997299

RESUMO

Juvenile dermatomyositis (JDM) is a rare immune-mediated disease of childhood with putative links to microbial exposures. In this multi-center, prospective, observational cohort study, we evaluated whether JDM is associated with discrete oral and gut microbiome signatures. We generated 16S rRNA sequencing data from fecal, saliva, supragingival, and subgingival plaque samples from JDM probands (n = 28). To control for genetic and environmental determinants of microbiome community structure, we also profiled microbiomes of unaffected family members (n = 27 siblings, n = 26 mothers, and n = 17 fathers). Sample type (oral-vs-fecal) and nuclear family unit were the predominant variables explaining variance in microbiome diversity, more so than having a diagnosis of JDM. The oral and gut microbiomes of JDM probands were more similar to their own unaffected siblings than they were to the microbiomes of other JDM probands. In a sibling-paired within-family analysis, several potentially immunomodulatory bacterial taxa were differentially abundant in the microbiomes of JDM probands compared to their unaffected siblings, including Faecalibacterium (gut) and Streptococcus (oral cavity). While microbiome features of JDM are often shared by unaffected family members, the loss or gain of specific fecal and oral bacteria may play a role in disease pathogenesis or be secondary to immune dysfunction in susceptible individuals.


Assuntos
Dermatomiosite , Fezes , Microbioma Gastrointestinal , Boca , RNA Ribossômico 16S , Humanos , Fezes/microbiologia , Dermatomiosite/microbiologia , Dermatomiosite/genética , Feminino , Masculino , Criança , Boca/microbiologia , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Estudos Prospectivos , Disbiose/microbiologia , Microbiota/genética , Pré-Escolar , Adolescente , Saliva/microbiologia , Adulto
2.
STAR Protoc ; 2(4): 100938, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34806048

RESUMO

Gastrointestinal motility is regulated by a variety of environmental factors including gut microbes and metabolites. The ability to interrogate mouse models of gut motility has enabled elucidation of these relationships. Here we describe integration of the red carmine dye and fluorescence isothiocyanate-dextran marker-based assays for characterizing gut transit with spatial resolution, along with an optional intracolonic infusion protocol for studying the effects of metabolites on colonic transit. These protocols can be adapted for use in gnotobiotic and conventional mouse models. For complete details on the use and execution of this protocol, please refer to Li et al. (2021).


Assuntos
Modelos Animais de Doenças , Trânsito Gastrointestinal/fisiologia , Animais , Biomarcadores/metabolismo , Fezes/química , Feminino , Trato Gastrointestinal/química , Trato Gastrointestinal/metabolismo , Vida Livre de Germes , Masculino , Camundongos
3.
iScience ; 24(6): 102508, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142026

RESUMO

Gut motility is regulated by the microbiome via mechanisms that include bile acid metabolism. To localize the effects of microbiome-generated bile acids, we colonized gnotobiotic mice with different synthetic gut bacterial communities that were metabolically phenotyped using a functional in vitro screen. Using two different marker-based assays of gut transit, we inferred that bile acids exert effects on colonic transit. We validated this using an intra-colonic bile acid infusion assay and determined that these effects were dependent upon signaling via the bile acid receptor, TGR5. The intra-colonic bile acid infusion experiments further revealed sex-biased bile acid-specific effects on colonic transit, with lithocholic acid having the largest pro-motility effect. Transcriptional responses of the enteric nervous system (ENS) were stereotypic, regional, and observed in response to different microbiota, their associated bile acid profiles, and even to a single diet ingredient, evidencing exquisite sensitivity of the ENS to environmental perturbations.

4.
PLoS One ; 16(3): e0248730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33725024

RESUMO

COVID-19 (coronavirus disease 2019) patients exhibiting gastrointestinal symptoms are reported to have worse prognosis. Ace2 (angiotensin-converting enzyme 2), the gene encoding the host protein to which SARS-CoV-2 spike proteins bind, is expressed in the gut and therefore may be a target for preventing or reducing severity of COVID-19. Here we test the hypothesis that Ace2 expression in the gastrointestinal and respiratory tracts is modulated by the microbiome. We used quantitative PCR to profile Ace2 expression in germ-free mice, conventional raised specific pathogen-free mice, and gnotobiotic mice colonized with different microbiota. Intestinal Ace2 expression levels were significantly higher in germ-free mice compared to conventional mice. A similar trend was observed in the respiratory tract. Intriguingly, microbiota depletion via antibiotics partially recapitulated the germ-free phenotype, suggesting potential for microbiome-mediated regulation of Ace2 expression. Variability in intestinal Ace2 expression was observed in gnotobiotic mice colonized with different microbiota, partially attributable to differences in microbiome-encoded proteases and peptidases. Together, these data suggest that the microbiome may be one modifiable factor determining COVID-19 infection risk and disease severity.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Colo/enzimologia , Microbioma Gastrointestinal , Intestino Delgado/enzimologia , Pulmão/enzimologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Proteína da Polipose Adenomatosa do Colo/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , Feminino , Expressão Gênica , Interleucina-10/deficiência , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA