Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Chemistry ; 30(44): e202401588, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38837489

RESUMO

Plastic pollution constitutes an evergrowing urgent environmental problem, since overaccumulation of plastic waste, arising from the immense increase of the production of disposable plastic products, overcame planet's capacity to properly handle them. Chemical upcycling of polystyrene constitutes a convenient method for the conversion of plastic waste into high-added value chemicals, suggesting an attractive perspective in dealing with the environmental crisis. We demonstrate herein a novel, easy-to-perform organocatalytic photoinduced aerobic protocol, which proceeds via synergistic indirect hydrogen atom transfer (HAT) catalysis under LED 390 nm Kessil lamps as the irradiation source. The developed method employs a BrCH2CN-thioxanthone photocatalytic system and was successfully applied to a variety of everyday-life plastic products, leading to the isolation of benzoic acid after simple base-acid work up in yields varying from 23-49 %, while a large-scale experiment was successfully performed, suggesting that the photocatalytic step is susceptible to industrial application.

2.
Chemistry ; : e202402984, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343744

RESUMO

The hydroxamic acid functionality is present in various medicinal agents and has attracted special interest for synthetic transformations in both organic and medicinal chemistry. The N-O bond cleavage of hydroxamic acid derivatives provides an interesting transformation for the generation of various products. We demonstrate, herein, that O-benzyl-type protected hydroxamic acids may undergo photochemical N-O bond cleavage, in the presence or absence of a catalyst, leading to amides. Although some O-benzyl protected aromatic hydroxamates may be photochemically converted to amides in the presence of a base and anthracene as the catalyst, employing O-2-nitrobenzyl group allowed the smooth conversion of both aliphatic and aromatic hydroxamates to primary or secondary amides in good to excellent yields in the presence of an amine, bypassing the need of a catalyst. DFT and UV-Vis studies supported the effective generation of an electron donor-acceptor (EDA) complex between O-2-nitrobenzyl hydroxamates and amines, which enabled the successful product formation under these photochemical conditions. An extensive substrate scope was demonstrated, showcasing that both aliphatic or aromatic hydroxamates are compatible with this protocol, affording a wide variety of primary and secondary amides.

3.
Chemistry ; 30(21): e202400253, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38324672

RESUMO

Light-mediated processes have received significant attention, since they have re-surfaced unconventional reactivity platforms, complementary to conventional polar chemistry. γ-Lactones and cyclopropanes are prevalent moieties, found in numerous natural products and pharmaceuticals. Among various methods for their synthesis, light-mediated protocols are coming to the spotlight, although these are contingent upon the use of photoorgano- or metal-based catalysts. Herein, we introduce a novel photochemical activation of iodo-reagents via the use of cheap sodium ascorbate or ascorbic acid to enable their homolytic scission and addition onto double bonds. The developed protocol was applied successfully to the formal [3+2] cycloaddition for the synthesis of γ-lactones, traditional atom transfer radical addition (ATRA) reactions and the one-pot two-step conversion of alkenes to cyclopropanes. In all cases, the desired products were obtained in good to high yields, while the reaction mechanism was thoroughly investigated. Depending on the nature of the iodo-reagent, a halogen or a hydrogen-bonded complex is formed, which initiates the process.

4.
Org Biomol Chem ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302224

RESUMO

The Knoevenagel condensation constitutes one of the most well-studied and crucial transformations in organic chemistry, since it facilitates the synthesis of numerous valuable compounds. With the advent of green chemistry, several alternative protocols for the Knoevenagel reaction have been introduced and catalyst-free approaches to the Knoevenagel condensation have also been mentioned, however the harsh temperatures employed and the limited substrate scope restricted their application. Herein, we have performed an extensive study on the catalyst-free and water-mediated Knoevenagel reaction, with specific focus on optimising the green parameters and metrics of our methodology. Additionally, we directly compared our approach with previous catalyst-free methods, while providing a fast assembly of multiple compounds in parallel.

5.
Beilstein J Org Chem ; 20: 379-426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410780

RESUMO

The synthesis of indoles and their derivatives, more specifically bis(indolyl)methanes (BIMs), has been an area of great interest in organic chemistry, since these compounds exhibit a range of interesting biological and pharmacological properties. BIMs are naturally found in cruciferous vegetables and have been shown to be effective antifungal, antibacterial, anti-inflammatory, and even anticancer agents. Traditionally, the synthesis of BIMs has been achieved upon the acidic condensation of an aldehyde with indole, utilizing a variety of protic or Lewis acids. However, due to the increased environmental awareness of our society, the focus has shifted towards the development of greener synthetic technologies, like photocatalysis, organocatalysis, the use of nanocatalysts, microwave irradiation, ball milling, continuous flow, and many more. Thus, in this review, we summarize the medicinal properties of BIMs and the developed BIM synthetic protocols, utilizing the reaction between aldehydes with indoles, while focusing on the more environmentally friendly methods developed over the years.

6.
Chemistry ; 29(35): e202300556, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37015030

RESUMO

The direct amide bond formation between a carboxylic acid and an amine still constitutes a challenging reaction for both academia and industry. We demonstrate herein that several pairs of amines (halogen bond acceptors) and organohalogen sources may be used for the photochemical amidation reaction under either UVA or sunlight irradiation. Our studies led to the identification of pyridine-CBr4 as an efficient agent to perform amide synthesis under LED 370 nm irradiation, avoiding super-stoichiometric quantities. An extended substrate scope was demonstrated, showing that the widely used amino and carboxyl protecting groups are compatible with this photochemical protocol, while a number of industrially interesting products and bioactive compounds were synthesized. Direct infusion-high resolution mass spectrometry studies suggest an unprecedented type of carboxylic acid activation mode upon irradiation, involving the generation of a symmetric anhydride, an active ester with pyridine N-oxide and a mixed anhydride with hypobromous acid.


Assuntos
Aminas , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Amidas/química , Piridinas , Anidridos
7.
Chemistry ; 29(45): e202301268, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254681

RESUMO

The niche field of photochemistry offers opportunities that are not found in "traditional" ground state chemical pathways. Aminochlorinated derivatives are an interesting family of 1,2-difunctionalised compounds that provide access to a variety of natural products and pharmaceutical active substances. A practical, catalyst-free chloroamination protocol is described herein, providing access to intermediates of great importance, utilising mild and photochemical reaction conditions (370 nm), where N-chlorosulfonamides are used as both nitrogen and chlorine sources. A wide variety of olefins, decorated with a plethora of functional groups, was tested providing excellent results (28 examples, 18-88 % yield). Mechanistic studies (UV-Vis, control experiments and quantum yield measurement) were also performed.

8.
Org Biomol Chem ; 21(2): 365-369, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36512428

RESUMO

A versatile, inexpensive and sustainable protocol for the preparation of valuable bis-indolyl methanes via visible light-mediated, metal-free Friedel-Crafts arylation has been developed. The procedure, that exploits the peculiar behavior of arylazo sulfones as non-ionic photoacid generators (PAGs), was applied to the conversion of a variety of aliphatic and aromatic aldehydes into diarylmethanes in good to highly satisfactory yields, employing a low-catalyst loading (0.5 mol%) and irradiation at 456 nm.

9.
Org Biomol Chem ; 21(2): 351-358, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36503937

RESUMO

The development of greener and more sustainable methods, as well as the adaptation of already existing protocols to more environmentally friendly procedures, has become crucial for organic synthesis. The introduction and utilization of greener solvents is a very promising alternative, especially when they can replace toxic organic solvents in the known and widely used organic reactions. Cyrene has appeared to be an excellent alternative solvent for a number of organic reactions. In this work, the development of a new, greener and more economical protocol for the Mizoroki-Heck reaction is described, using Cyrene as the green solvent and Pd/C as the palladium catalyst source. A wide substrate scope for the coupling of aryl iodides with acrylamides, acrylates, acrylic acid, acrylonitrile and styrene was demonstrated. The recyclability of Cyrene and the leaching of palladium in the final product were examined in order to enhance the industrial applicability of this protocol. Furthermore, the synthesis of the natural product piperlotine A is reported.


Assuntos
Iodetos , Paládio , Solventes , Acrilamidas , Catálise
10.
Org Biomol Chem ; 21(6): 1284-1293, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36645430

RESUMO

The hydroacylation of dialkyl azodicarboxylates has received a lot of attention lately due to the great importance of acyl hydrazides in organic chemistry. Herein, we report an inexpensive and green photochemical approach, where light irradiation (390 nm) significantly accelerates the reaction between dialkyl azodicarboxylates and aldehydes, while water is employed as the solvent. A variety of aromatic and aliphatic aldehydes were converted into their corresponding acyl hydrazides in good to excellent yields in really short reaction times (15-210 min) and the reaction mechanism was also studied. Applications of this reaction in the syntheses of Vorinostat and Moclobemide were demonstrated.

11.
Chemistry ; 28(19): e202200023, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137984

RESUMO

Since 2014, we have introduced in literature the use of phenylglyoxylic acid (PhCOCOOH), a small and commercially available organic molecule, as a potent promoter in a variety of photochemical processes. Although PhCOCOOH has a broad scope of photochemical reactions that can promote, the understanding of its mode of action in our early contributions was moderate. Herein, we are restudying and revisiting the mechanism of action of PhCOCOOH in most of these early contributions, providing a unified mechanism of action. Furthermore, the understanding of its action as a photoinitiator opened a new comparison study with known and commercially available photoinitiators.


Assuntos
Processos Fotoquímicos
12.
Photochem Photobiol Sci ; 21(5): 687-694, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34750786

RESUMO

A novel, mild, metal-free and easy-to-execute procedure for the C-H acetalization of O-heterocycles via visible light activation is presented, utilizing phenylglyoxylic acid as the photoinitiator. Biomass-derived O-heterocycles, like THF, can be employed, while primary, secondary alcohols and alcohols bearing a variety of functionalities were succesfully employed, affording the desired acetals in high yields. Facile acidic deprotection was also performed.


Assuntos
Acetais , Álcoois , Glioxilatos , Ácidos Mandélicos
13.
Org Biomol Chem ; 20(29): 5836-5844, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35838682

RESUMO

Sulfoxide-containing molecules are an important class of compounds in the pharmaceutical industry and many efforts have been made to develop new and green protocols, targeting the chemoselective transformation of sulfides into sulfoxides. Photochemistry is a rapidly expanding research field employing light as the energy source. Photochemical aerobic processes possess additional advantages to photochemistry and may find applications in the chemical industries. Herein, a 370 nm catalyst-free aerobic protocol was developed, using 2-Me-THF as the green solvent. At the same time, two low-catalyst-loading anthraquinone-based processes (under a CFL lamp or 427 nm irradiation) in 2-Me-THF were developed. Furthermore, a broad range of substrates was tested. We also implemented our protocols towards the synthesis of the pharmaceutical active ingredients (APIs) sulforaphane and modafinil.


Assuntos
Sulfetos , Sulfóxidos , Isotiocianatos , Modafinila , Oxirredução , Sulfetos/química , Sulfóxidos/química
14.
Chemistry ; 27(29): 7915-7922, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33772903

RESUMO

A cheap, facile and metal-free photochemical protocol for the activation of aromatic aldehydes has been developed. Utilizing thioxanthen-9-one as the photocatalyst and cheap household lamps as the light source, a variety of aromatic aldehydes have been activated and subsequently converted in a one-pot reaction into amides, hydroxamic acids and esters in good to high yields. The applicability of this method was highlighted in the synthesis of Moclobemide, a drug against depression and social anxiety. Extended and detailed mechanistic studies have been conducted, in order to determine a plausible mechanism for the reaction.

15.
Org Biomol Chem ; 19(24): 5237-5253, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047729

RESUMO

Photoorganocatalysis has been recognised by the organic chemistry community as an important part of photochemistry and catalysis. In general, aromatic ketones constitute key players in this type of catalysis as they are involved in a plethora of examples in the literature. Among the various aromatic ketones, thioxanthone (TX) seems to play a unique role in photochemistry. In comparison with other aromatic ketones, TX has a high triplet energy and a relatively long triplet lifetime, while it has the ability to participate successfully in merger reactions with metal complexes. In this review, we will discuss the photophysical properties of this small organic molecule, as well as the numerous examples of photochemical reactions, where it is employed as a mediator and more specifically in polymerisation reactions, and organic transformations.

16.
Chemistry ; 26(63): 14453-14460, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32852802

RESUMO

The development of novel methodologies for the functionalization of saturated heterocycles is highly desirable. Herein, we report a cheap and efficient photochemical method for the C-H functionalization of saturated O-heterocycles, as well as the deconstructive ring-cleavage of S-heterocycles, employing hypervalent iodine alkynylation reagents (ethynylbenziodoxolones, EBX). This photochemical alkynylation is performed utilizing phenylglyoxylic acid as the photoinitiator, leading to the corresponding products in good to high yields, under household fluorescent light bulb irradiation. When O-heterocycles were employed, the expected α-C-H alkynylation took place. In contrast, oxidative ring-opening to form a thioalkyne and an aldehyde was observed with S-heterocycles. Preliminary mechanistic experiments are presented to give first insights into this puzzling divergent reactivity.

17.
Angew Chem Int Ed Engl ; 59(4): 1735-1741, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31736186

RESUMO

Direct alkylation of C(sp2 )-H bonds to convert an aldehyde into a ketone is a notorious transformation, due to the laborious challenge of the formation of ketyl or acyl radicals. Herein, we report a green, cheap, metal-free and efficient method for the hydroacylation of olefins in water. This photochemical protocol utilizes phenylglyoxylic acid, a commercially available small organic molecule, as the photoinitiator, water as the solvent and household fluorescent lamps as the irradiation source, leading to a broad substrate scope of products in moderate to good yields. A wide range of aromatic and aliphatic aldehydes, terminal and non-terminal alkenes and pharmaceutically relevant molecules can be employed, without the need of directing groups and additives or metal catalysts.

18.
Beilstein J Org Chem ; 16: 833-857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395186

RESUMO

Photochemistry, the use of light to promote organic transformations, has been known for more than a century but only recently has revolutionized the way modern chemists are thinking. Except from transition metal-based complexes, small organic molecules have been introduced as catalysts or initiators. In this review, we summarize the potential that (aromatic or aliphatic) aldehydes have as photoinitiators. The photophysical properties and photoreactivity of benzaldehyde are initially provided, followed by applications of aldehydes as initiators for polymerization reactions. Finally, the applications to date regarding aldehydes as photoinitiators in organic synthesis are presented.

19.
Molecules ; 24(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027341

RESUMO

Photocatalysis is a rapidly evolving area of research in modern organic synthesis. Among the traditional photocatalysts, metal-complexes based on ruthenium or iridium are the most common. Herein, we present the synthesis of two photoactive, ruthenium-based complexes bearing pyridine-quinoline or terpyridine ligands with extended aromatic conjugation. Our complexes were utilized in the atom transfer radical addition (ATRA) of haloalkanes to olefins, using bromoacetonitrile or bromotrichloromethane as the source of the alkyl group. The tailor-made ruthenium-based catalyst bearing the pyridine-quinoline bidentate ligand proved to be the best-performing photocatalyst, among a range of metal complexes and organocatalysts, efficiently catalyzing both reactions. These photocatalytic atom transfer protocols can be expanded into a broad scope of olefins. In both protocols, the photocatalytic reactions led to products in good to excellent isolated yields.


Assuntos
Alcenos/química , Processos Fotoquímicos , Acetonitrilas/química , Catálise , Estrutura Molecular , Teoria Quântica
20.
Chemistry ; 24(7): 1726-1731, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194813

RESUMO

Selective C-H activation is an area of growing importance. Metal-free C-H activation of branched aldehydes mediating the hydroacylation of electron-deficient alkenes is an attractive transformation, but is limited by selectivity issues, especially in the case of α,α-disubstituted aldehydes. Herein, we report a green, cheap, versatile, and easily reproducible selective hydroacylation of alkenes utilizing phenylglyoxylic acid as the photocatalyst and common household bulbs for irradiation, leading to products in excellent yields and selectivities. The reaction mechanism was also studied to account for the high selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA