Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Toxicol Appl Pharmacol ; 305: 22-39, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27260674

RESUMO

Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, IK1, a Kir current mediated by Kir2.1 channel and IKACh, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC50 value of 1.62µM and 1.15µM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit IKACh current with an IC50 value of 3.32µM but has no significant effects on IK1. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks.


Assuntos
Canal de Potássio ERG1/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Alcaloides de Triptamina e Secologanina/farmacologia , Animais , Alcaloides Diterpenos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Coração/fisiologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Oócitos/metabolismo , RNA Mensageiro/metabolismo , Xenopus
2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(4): 573-580, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31720798

RESUMO

Chloroform has been used over decades in anesthesia before it was replaced by other volatile anesthetics like halothane or sevoflurane. Some of the reasons were inadmissible side effects of chloroform like bradycardia or neural illness. In the present study, we identified members of the G protein-activated inwardly rectifying potassium channel family (Kir3) expressed in Xenopus oocytes as potential common molecular targets for both the neural and cardiac effects of chloroform. Millimolar concentration currents representing a 1:10000 dilution of commercially available chloroform were used in laboratories that augment neuronal Kir3.1/3.2 currents as well as cardiac Kir3.1/3.4. This effect was selective and only observed in currents from Kir3 subunits but not in currents from Kir2 subunits. Augmentation of atrial Kir3.1/3.4 currents leads to an effective drop of the heart rate and a reduction in contraction force in isolated mouse atria.


Assuntos
Função Atrial/efeitos dos fármacos , Bradicardia/induzido quimicamente , Clorofórmio/toxicidade , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Átrios do Coração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Bradicardia/fisiopatologia , Células HEK293 , Humanos , Camundongos , Neurônios/fisiologia , Oócitos , Xenopus laevis
3.
PLoS One ; 13(10): e0205109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286162

RESUMO

Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na+ currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes. The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function. In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Predisposição Genética para Doença , Deleção de Sequência , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Membrana Celular/metabolismo , Família , Feminino , Estudos de Associação Genética , Glucose/metabolismo , Humanos , Mutação com Perda de Função , Masculino , Potenciais da Membrana/fisiologia , Modelos Moleculares , Estrutura Molecular , Oócitos , Linhagem , Sódio/metabolismo , Xenopus laevis
4.
Stem Cell Res ; 28: 136-140, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477591

RESUMO

Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Técnicas de Cultura de Células/métodos , Duplicação Gênica , Transportador de Glucose Tipo 3/genética , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Camadas Germinativas/citologia , Humanos , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Mycoplasma/isolamento & purificação
5.
PLoS One ; 11(11): e0167033, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898723

RESUMO

AIM: Primary failure of tooth eruption (PFE) is causally linked to heterozygous mutations of the parathyroid hormone receptor (PTH1R) gene. The mutants described so far lead to exchange of amino acids or truncation of the protein that may result in structural changes of the expressed PTH1R. However, functional effects of these mutations have not been investigated yet. MATERIALS AND METHODS: In HEK293 cells, PTH1R wild type was co-transfected with selected PTH1R mutants identified in patients with PFE. The effects on activation of PTH-regulated intracellular signaling pathways were analyzed by ELISA and Western immunoblotting. Differential effects of wild type and mutated PTH1R on TRESK ion channel regulation were analyzed by electrophysiological recordings in Xenopus laevis oocytes. RESULTS: In HEK293 cells, activation of PTH1R wild type increases cAMP and in response activates cAMP-stimulated protein kinase as detected by phosphorylation of the vasodilator stimulated phosphoprotein (VASP). In contrast, the PTH1R mutants are functionally inactive and mutant PTH1R/Gly452Glu has a dominant negative effect on the signaling of PTH1R wild type. Confocal imaging revealed that wild type PTH1R is expressed on the cell surface, whereas PTH1R/Gly452Glu mutant is mostly retained inside the cell. Furthermore, in contrast to wild type PTH1R which substantially augmented K+ currents of TRESK channels, coupling of mutated PTH1R to TRESK channels was completely abolished. CONCLUSIONS: PTH1R mutations affect intracellular PTH-regulated signaling in vitro. In patients with primary failure of tooth eruption defective signaling of PTH1R mutations is suggested to occur in dento-alveolar cells and thus may lead to impaired tooth movement.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Mutação/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Doenças Dentárias/patologia , Animais , Moléculas de Adesão Celular/metabolismo , AMP Cíclico/metabolismo , Eletrofisiologia , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Hormônio Paratireóideo/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais , Doenças Dentárias/genética , Xenopus laevis
6.
Sci Rep ; 5: 12548, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224542

RESUMO

In dorsal root ganglia (DRG) neurons TRESK channels constitute a major current component of the standing outward current IKSO. A prominent physiological role of TRESK has been attributed to pain sensation. During inflammation mediators of pain e.g. lysophosphatidic acid (LPA) are released and modulate nociception. We demonstrate co-expression of TRESK and LPA receptors in DRG neurons. Heterologous expression of TRESK and LPA receptors in Xenopus oocytes revealed augmentation of basal K(+) currents upon LPA application. In DRG neurons nociception can result from TRPV1 activation by capsaicin or LPA. Upon co-expression in Xenopus oocytes LPA simultaneously increased both depolarising TRPV1 and hyperpolarising TRESK currents. Patch-clamp recordings in cultured DRG neurons from TRESK[wt] mice displayed increased IKSO after application of LPA whereas under these conditions IKSO in neurons from TRESK[ko] mice remained unaltered. Under current-clamp conditions LPA application differentially modulated excitability in these genotypes upon depolarising pulses. Spike frequency was attenuated in TRESK[wt] neurons and, in contrast, augmented in TRESK[ko] neurons. Accordingly, excitation of nociceptive neurons by LPA is balanced by co-activation of TRESK channels. Hence excitation of sensory neurons is strongly controlled by the activity of TRESK channels, which therefore are good candidates for the treatment of pain disorders.


Assuntos
Mediadores da Inflamação/farmacologia , Lisofosfolipídeos/farmacologia , Canais de Potássio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Gânglios Espinais/citologia , Genótipo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/deficiência , Canais de Potássio/genética , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Xenopus/crescimento & desenvolvimento
7.
PLoS One ; 8(10): e78238, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167611

RESUMO

The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.


Assuntos
Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estresse Fisiológico/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Corticosterona/sangue , Regulação da Expressão Gênica , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA