Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248028

RESUMO

Spinal cord injury (SCI) is a devastating condition that often leads to severe and permanent neurological deficits. The complex pathophysiology of an SCI involves a cascade of events, including inflammation, oxidative stress, and secondary injury processes. Among the myriad of molecular players involved, interleukin-10 (IL-10) emerges as a key regulator with the potential to modulate both the inflammatory response and promote neuroprotection. This comprehensive review delves into the intricate interplay of IL-10 in the pathogenesis of an SCI and explores its therapeutic implications in the quest for effective treatments. IL-10 has been found to regulate inflammation, oxidative stress, neuronal apoptosis, and glial scars after an SCI. Its neuroprotective properties have been evaluated in a plethora of animal studies. IL-10 administration, either isolated or in combination with other molecules or biomaterials, has shown neuroprotective effects through a reduction in inflammation, the promotion of tissue repair and regeneration, the modulation of glial scar formation, and improved functional outcomes. In conclusion, IL-10 emerges as a pivotal player in the pathogenesis and treatment of SCIs. Its multifaceted role in modulating inflammation, oxidative stress, neuronal apoptosis, glial scars, and neuroprotection positions IL-10 as a promising therapeutic target. The ongoing research exploring various strategies for harnessing the potential of IL-10 offers hope for the development of effective treatments that could significantly improve outcomes for individuals suffering from spinal cord injuries. As our understanding of IL-10's intricacies deepens, it opens new avenues for innovative and targeted therapeutic interventions, bringing us closer to the goal of alleviating the profound impact of SCIs on patients' lives.

2.
J Funct Morphol Kinesiol ; 9(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651421

RESUMO

Total hip arthroplasty is indubitably one of the most performed operations worldwide. On the other hand, especially in the western world, the average age that women get pregnant has raised confoundedly. Consequently, a steadily increasing number of women become pregnant after they had hip arthroplasty surgery, with copious potential implications. The amount of knowledge on this particular field is considered inadequate in the existing literature. This paper aims to augment clinicians understanding surrounding this topic. A systematic literature review was conducted in accordance with the PRISMA guidelines. Papers from various computerized databases were scrutinized. Article selection was carried out by three authors independently employing specific pre-determined inclusion and exclusion criteria, while disagreements were elucidated with the contribution of other authors. A patently limited number of research articles were detected from our rigorous literature review, with only 12 papers meeting the inclusion criteria. The vast majority of studies were small-scale and examined confined population groups. Most studies had been performed in Finland, utilizing data from nationwide registries. Women with previous history of total hip arthroplasty feature increased rates of c-section delivery, although vaginal labor can be attempted with certain precautions. Hip implants' survival does not appear to be affected from gestation, which is predominately well-tolerated from these women. Metal ion circulation in mothers' blood has not been proven to trigger substantial complications concerning either mothers or offspring. It can be considered safe for women with such medical history to get pregnant; however, further multinational studies and pertinent research on this field are vital to attain more solid inferences.

3.
J Clin Med ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930011

RESUMO

Osteogenesis Imperfecta (OI) is a genetic disorder caused by mutations in genes responsible for collagen synthesis or polypeptides involved in the formation of collagen fibers. Its predominant skeletal complication is scoliosis, impacting 25 to 80% of OI patients. Vertebral deformities of the scoliotic curves in OI include a variety of malformations such as codfish, wedged-shaped vertebrae or platyspondyly, craniocervical junction abnormalities, and lumbosacral spondylolysis and spondylolisthesis. Although the precise pathophysiology of these spinal deformities remains unclear, anomalies in bone metabolism have been implicated in the progression of scoliotic curves. Bone Mineral Density (BMD) measurements have demonstrated a significant reduction in the Z-score, indicating osteoporosis and a correlation with the advancement of scoliosis. Factors such as increased mechanical strains, joint hypermobility, lower leg length discrepancy, pelvic obliquity, spinal ligament hypermobility, or vertebrae microfractures may also contribute to the severity of scoliosis. Histological vertebral analysis has confirmed that changes in trabecular microarchitecture, associated with inadequate bone turnover, indicate generalized bone metabolic defects in OI. At the molecular level, the upregulation of Transforming Growth factor-ß (TGFß) signaling in OI can lead to disturbed bone turnover and changes in muscle mass and strength. Understanding the relationship between spinal clinical features and molecular pathways could unveil TGFß -related molecular targets, paving the way for novel therapeutic approaches in OI.

4.
Infect Dis Rep ; 16(2): 298-316, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667751

RESUMO

Background: Despite the expanding use of orthopedic devices and the application of strict pre- and postoperative protocols, the elimination of postoperative implant-related infections remains a challenge. Objectives: To identify and assess the in vitro and in vivo properties of antimicrobial-, silver- and iodine-based implants, as well as to present novel approaches to surface modifications of orthopedic implants. Methods: A systematic computer-based review on the development of these implants, on PubMed and Web of Science databases, was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results: Overall, 31 in vitro and 40 in vivo entries were evaluated. Regarding the in vitro studies, antimicrobial-based coatings were assessed in 12 entries, silver-based coatings in 10, iodine-based in 1, and novel-applied coating technologies in 8 entries. Regarding the in vivo studies, antimicrobial coatings were evaluated in 23 entries, silver-coated implants in 12, and iodine-coated in 1 entry, respectively. The application of novel coatings was studied in the rest of the cases (4). Antimicrobial efficacy was examined using different bacterial strains, and osseointegration ability and biocompatibility were examined in eukaryotic cells and different animal models, including rats, rabbits, and sheep. Conclusions: Assessment of both in vivo and in vitro studies revealed a wide antimicrobial spectrum of the coated implants, related to reduced bacterial growth, inhibition of biofilm formation, and unaffected or enhanced osseointegration, emphasizing the importance of the application of surface modification techniques as an alternative for the treatment of orthopedic implant infections in the clinical settings.

5.
Cureus ; 14(5): e25429, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35774645

RESUMO

Foot and ankle tumors are relatively rare. Nevertheless, the calcaneus is a prevalent location accommodating various lesions. Reactional periostitis of the lateral wall is rarely encountered but can potentially mimic a wide variety of tumors. We present a case of excessive proliferation due to chronic compression of the peroneal tendons against the calcaneus in a female patient with a history of diminished foot control, treated successfully by tumor excision and peroneal restoration via the tubularization technique. This study aimed to underline the mimicking potential of reactional periostitis and its effect on the peroneal tendons and hindfoot motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA