Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728652

RESUMO

Porous organic polymers (POPs) with inherent porosity, tunable pore environment, and semiconductive property are ideally suitable for application in various advanced semiconductor-related devices. However, owing to the lack of processability, POPs are usually prepared in powder forms, which limits their application in advanced devices. Herein, we demonstrate an example of information storage application of POPs with film form prepared by an electrochemical method. The growth process of the electropolymerized films in accordance with the Volmer-Weber model was proposed by observation of atomic force microscopy. Given the mechanism of the electron transfer system, we verified and mainly emphasized the importance of porosity and interfacial properties of porous polymer films for memristor. As expected, the as-fabricated memristors exhibit good performance on low turn-on voltage (0.65 ± 0.10 V), reliable data storage, and high on/off current ratio (104). This work offers inspiration for applying POPs in the form of electropolymerized films in various advanced semiconductor-related devices.

2.
Angew Chem Int Ed Engl ; 61(38): e202205796, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35639438

RESUMO

Porous organic polymer films (PFs) with intrinsical porosity and tuneable pore environment are ideally suited for application in electronic devices. However, the huge challenges still exist for construction of electronic devices based on PFs owing to lack of robustness, processability, and controllable preparation. Herein, we report the electrochemical preparation of carbazole-based porous organic polymer films (eCPFs) as switchable materials for the memristors. These eCPFs possess the characteristics of controllable thickness/size, high stability, and excellent porosity. Carbazole and cyano groups are introduced into the eCPFs to constructing electron transfer systems. Thus, the memristors constructed based on these eCPFs exhibit excellent switching performance, reliability, and reproducibility. The electrochemically controllable preparation method of porous organic polymer membranes proposed in this paper provides a feasible idea for the developments of electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA