Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 232: 108188, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34838530

RESUMO

Acanthamoeba spp. feeds on bacteria, fungi, and algae to obtain nutrients from the environment. However, several pathogens can survive and multiply in Acanthamoeba. Mechanisms necessary for the survival and proliferation of microorganisms in Acanthamoeba remain unclear. The object of this study was to identify effective factors for the survival of microorganisms in Acanthamoeba. Differentially expressed genes (DEGs) in A. castellanii infected by Legionella pneumophila or Escherichia coli were identified based on mRNA sequencing. A total of 2342 and 1878 DEGs were identified in Acanthamoeba with L. pneumophila and E. coli, respectively. Among these DEGs, 502 were up-regulated and 116 were down-regulated in Acanthamoeba infected by L. pneumophila compared to those in Acanthamoeba feed on E. coli. Gene ontology analysis showed that the genes encoded small GTPase-mediated signal transduction proteins in the biological process domain, intracellular proteins in the cellular component domain, and ATP binding proteins in the molecular function domain were up-regulated while integral components of membrane proteins in the cellular component domain were down-regulated in Acanthamoeba infected by Legionella compared to those in Acanthamoeba feed on E. coli. During endosymbiosis with Legionella, Acanthamoeba showed various changes in the expression of genes supposed to be involved in phagosomal maturation. Acanthamoeba infected by Legionella also showed high expression levels of aminotransferase, methyltransferase, and cysteine proteinase but low expression levels of RNA pseudouridine synthase superfamily protein and 2OG-Fe(II) oxygenase superfamily. These results provide directions for further research to understand the survival strategy of L. pneumophila in A. castellanii.


Assuntos
Acanthamoeba/genética , Acanthamoeba/microbiologia , Escherichia coli/fisiologia , Expressão Gênica , Legionella pneumophila/fisiologia , Regulação para Baixo , Fagocitose/fisiologia , RNA de Protozoário/química , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Simbiose/genética , Regulação para Cima
2.
Korean J Parasitol ; 60(4): 247-254, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36041486

RESUMO

Vincristine (VCR) is a chemotherapeutic agent widely used in treatment of malignancies. However, VCR has a limitation in use since it commonly causes a painful neuropathy (VCR-induced peripheral neuropathy, VIPN). Inflammatory cytokines secreted by immune cells such as macrophages can exacerbate allodynia and hyperalgesia, because inhibiting the inflammatory response is a treatment target for VIPN. In this study, we investigated whether Trichinella spiralis, a widely studied helminth for its immunomodulatory abilities, can alleviate VCR-induced allodynia. Von Frey test showed that T. spiralis infection improved mechanical allodynia at 10 days after VCR injection. We further observed whether the difference was due to mitigated axon degeneration, but no significant difference between the groups in axonal degeneration in sciatic nerves and intra-epidermal nerve fibers was found. Conversely, we observed that number of infiltrated macrophages was decreased in the sciatic nerves of the T. spiralis infected mice. Moreover, treatment of T. spiralis excretory-secretory products caused peritoneal macrophages to secrete decreased level of IL-1ß. This study suggests that T. spiralis can relieve VCR-induced mechanical allodynia by suppressing neuroinflammation and that application of controllable degree of helminth may prove beneficial for VIPN treatment.


Assuntos
Trichinella spiralis , Trichinella , Triquinelose , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos , Doenças Neuroinflamatórias , Triquinelose/tratamento farmacológico , Vincristina/efeitos adversos
3.
Korean J Parasitol ; 60(2): 143-147, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35500897

RESUMO

Acanthamoeba keratitis (AK) is a rare ocular disease, but it is a painful and sight-threatening infectious disease. Early diagnosis and adequate treatment are necessary to prevent serious complications. While AK is frequently diagnosis via several PCR assays or Acanthamoeba-specific antibodies, a more specific and effective diagnostic method is required. This study described the production of a polyclonal peptide antibody against the periplasmic binding protein (PBP) of A. castellanii and investigated its diagnostic potential. Western blot analysis showed that the PBP antibody specifically reacted with the cell lysates of A. castellanii. However, the PBP antibody did not interact with human corneal epithelial (HCE) cells and the other 3 major causative agents of keratitis. Immunocytochemistry (ICC) results revealed the specific detection of A. castellanii trophozoites and cysts by PBP antibodies when A. castellanii were co-cultured with HCE cells. PBP antibody specificity was further confirmed by co-culture of A. castellanii trophozoites with F. solani, S. aureus, and P. aeruginosa via ICC. The PBP antibody specifically reacted with the trophozoites and cysts of A. polyphaga, A. hatchetti, A. culbertsoni, A. royreba, and A. healyi, thus demonstrated its genus-specific nature. These results showed that the PBP polyclonal peptide antibody of A. castellanii could specifically detect several species of Acanthamoeba, contributing to the development of an effective antibody-based AK diagnostics.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Proteínas Periplásmicas de Ligação , Acanthamoeba/isolamento & purificação , Animais , Anticorpos , Humanos , Peptídeos , Staphylococcus aureus , Trofozoítos
4.
Korean J Parasitol ; 60(1): 7-14, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35247949

RESUMO

Acanthamoeba keratitis (AK) is a rare infectious disease and accurate diagnosis has remained arduous as clinical manifestations of AK were similar to keratitis of viral, bacterial, or fungal origins. In this study, we described the production of a polyclonal peptide antibody against the adenylyl cyclase-associated protein (ACAP) of A. castellanii, and evaluated its differential diagnostic potential. Enzyme-linked immunosorbent assay revealed high titers of A. castellanii-specific IgG and IgA antibodies being present in low dilutions of immunized rabbit serum. Western blot analysis revealed that the ACAP antibody specifically interacted with A. castellanii, while not interacting with human corneal epithelial (HCE) cells and other causes of keratitis such as Fusarium solani, Pseudomonas aeruginosa, and Staphylococcus aureus. Immunocytochemistry (ICC) results confirmed the specific detection of trophozoites and cysts of A. castellanii co-cultured with HCE cells. The ACAP antibody also specifically interacted with the trophozoites and cysts of 5 other Acanthamoeba species. These results indicate that the ACAP antibody of A. castellanii can specifically detect multiple AK-causing members belonging to the genus Acanthamoeba and may be useful for differentially diagnosing Acanthamoeba infections.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Adenilil Ciclases , Animais , Peptídeos , Coelhos , Trofozoítos
5.
Korean J Parasitol ; 60(1): 1-6, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35247948

RESUMO

The encystation of Acanthamoeba leads to the development of metabolically inactive and dormant cysts from vegetative trophozoites under unfavorable conditions. These cysts are highly resistant to anti-Acanthamoeba drugs and biocides. Therefore, the inhibition of encystation would be more effective in treating Acanthamoeba infection. In our previous study, a sirtuin family protein-Acanthamoeba silent-information regulator 2-like protein (AcSir2)-was identified, and its expression was discovered to be critical for Acanthamoeba castellanii proliferation and encystation. In this study, to develop Acanthamoeba sirtuin inhibitors, we examine the effects of sirtinol, a sirtuin inhibitor, on trophozoite growth and encystation. Sirtinol inhibited A. castellanii trophozoites proliferation (IC50=61.24 µM). The encystation rate of cells treated with sirtinol significantly decreased to 39.8% (200 µM sirtinol) after 24 hr of incubation compared to controls. In AcSir2-overexpressing cells, the transcriptional level of cyst-specific cysteine protease (CSCP), an Acanthamoeba cysteine protease involved in the encysting process, was 11.6- and 88.6-fold higher at 48 and 72 hr after induction of encystation compared to control. However, sirtinol suppresses CSCP transcription, resulting that the undegraded organelles and large molecules remained in sirtinol-treated cells during encystation. These results indicated that sirtinol sufficiently inhibited trophozoite proliferation and encystation, and can be used to treat Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Sirtuínas , Animais , Benzamidas , Proliferação de Células , Naftóis , Sirtuínas/genética , Sirtuínas/metabolismo , Trofozoítos/metabolismo
6.
Korean J Parasitol ; 59(1): 67-75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33684989

RESUMO

Legionella pneumophila is an opportunistic pathogen that survives and proliferates within protists such as Acanthamoeba spp. in environment. However, intracellular pathogenic endosymbiosis and its implications within Acanthamoeba spp. remain poorly understood. In this study, RNA sequencing analysis was used to investigate transcriptional changes in A. castellanii in response to L. pneumophila infection. Based on RNA sequencing data, we identified 1,211 upregulated genes and 1,131 downregulated genes in A. castellanii infected with L. pneumophila for 12 hr. After 24 hr, 1,321 upregulated genes and 1,379 downregulated genes were identified. Gene ontology (GO) analysis revealed that L. pneumophila endosymbiosis enhanced hydrolase activity, catalytic activity, and DNA binding while reducing oxidoreductase activity in the molecular function (MF) domain. In particular, multiple genes associated with the GO term 'integral component of membrane' were downregulated during endosymbiosis. The endosymbiont also induced differential expression of various methyltransferases and acetyltransferases in A. castellanii. Findings herein are may significantly contribute to understanding endosymbiosis of L. pneumophila within A. castellanii.


Assuntos
Acanthamoeba castellanii/genética , Acanthamoeba castellanii/microbiologia , Genes de Protozoários/genética , Legionella pneumophila/fisiologia , Simbiose/genética , Transcriptoma/genética , Acanthamoeba castellanii/enzimologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Ontologia Genética , Hidrolases/metabolismo , Legionella pneumophila/patogenicidade , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredutases/metabolismo , Análise de Sequência de RNA , Transcrição Gênica
7.
Exp Parasitol ; 188: 102-106, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29625097

RESUMO

Acanthamoeba keratitis is commonly encountered by contact lens wearers. Contact lens solution plays an important role in the safe use of contact lenses. The most popular products for disinfecting lenses are multipurpose disinfecting solutions (MPDS). However, almost all MPDS retailed in Korea are ineffective in killing Acanthamoeba. The objective of this study was to determine the possibility of using autophagy inhibitor chloroquine as a disinfecting agent to improve the amoebicidal activity of MPDS against Acanthamoeba, especially the cyst. Amoebicidal effects of eight different MPDSs combined with chloroquine (CQ), an autophagy inhibitor, and their cytotoxicities to human corneal epithelium cells were determined. Almost all MPDS showed strong amoebicidal effect on trophozoites after 8 h of exposure. However, they showed inadequate amoebicidal effect on cysts even after 24 h of exposure. MPDSs combined with 100 µM CQ increased their amoebicidal effects on immature cyst by inhibiting formation of mature cysts. Incubation with 100 µM CQ for 30 min did not have cytotoxicity to human corneal epithelial cells.


Assuntos
Ceratite por Acanthamoeba/prevenção & controle , Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Cloroquina/farmacologia , Soluções para Lentes de Contato/farmacologia , Amebicidas/toxicidade , Autofagia/efeitos dos fármacos , Cloroquina/toxicidade , Soluções para Lentes de Contato/toxicidade , Epitélio Corneano/citologia , Epitélio Corneano/efeitos dos fármacos , Humanos , República da Coreia
8.
Exp Parasitol ; 191: 31-35, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29885293

RESUMO

Several chemotherapeutic drugs have been described as amoebicidal agents acting against Acanthamoeba trophozoites and cysts. However, the underlying mechanism of action is poorly characterized. Here, we describe programmed cell death (PCD) in A. castellanii induced by polyhexamethylene biguanide (PHMB) and chloroquine. We used four types of amoebicidal agents including 0.02% PHMB, 0.02% chlorhexidine digluconate, 100 µM chloroquine, and 100 µM 2,6-dichlorobenzonitrile to kill Acanthamoeba trophozoites and cysts. Exposure to PHMB and chloroquine induced cell shrinkage and membrane blebbing in Acanthamoeba, observed microscopically. Externalization of phosphatidyl serine on the membranes of Acanthamoeba was detected by annexin V staining. Apoptotic cell death of Acanthamoeba by PHMB and chloroquine was confirmed by FACS analysis. Nuclear fragmentation of Acanthamoeba was demonstrated by DAPI staining. PHMB induced PCD in trophozoites and cysts, and chloroquine induced PCD in cysts. These findings are discussed to establish the most effective treatment for Acanthamoeba-induced keratitis.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Biguanidas/farmacologia , Cloroquina/farmacologia , Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba castellanii/citologia , Amebicidas/toxicidade , Biguanidas/toxicidade , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Cloroquina/toxicidade , Meios de Cultura , Fragmentação do DNA , Epitélio Corneano/citologia , Epitélio Corneano/efeitos dos fármacos , Humanos , Nitrilas/farmacologia , Fosfatidilserinas/análise
9.
Korean J Parasitol ; 56(5): 491-494, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30419735

RESUMO

Multipurpose contact lens disinfecting solutions (MPDS) are widely used to cleanse and disinfect microorganisms. However, disinfection efficacy of these MPDS against Acanthamoeba cyst remain insufficient. 2, 6-dichlorobenzonitrile (DCB), a cellulose synthesis inhibitor, is capable of increasing the amoebical effect against Acanthamoeba by inhibiting its encystation. In this study, we investigated the possibility of DCB as a disinfecting agent to improve the amoebicidal activity of MPDS against Acanthamoeba cyst. Eight commercial MPDS (from a to h) were assessed, all of which displayed insufficient amoebicidal activity against the mature cysts. Solution e, f, and h showed strong amoebicidal effect on the immature cysts. Amoebicidal efficacy against mature cysts remained inadequate even when the 8 MPDS were combined with 100 µM DCB. However, 4 kinds of MPDS (solution d, e, f, and h) including 100 µM DCB demonstrated strong amoebicidal activity against the immature cysts. The amoebicidal activity of solution d was increased by addition of DCB. Cytotoxicity was absent in human corneal epithelial cells treated with either DCB or mixture of DCB with MPDS. These results suggested that DCB can enhance the amoebicical activity of MPDS against Acanthamoeba immature cyst in vitro.


Assuntos
Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Soluções para Lentes de Contato/farmacologia , Nitrilas/farmacologia , Acanthamoeba/metabolismo , Células Cultivadas , Celulose/metabolismo , Soluções para Lentes de Contato/efeitos adversos , Lentes de Contato/parasitologia , Células Epiteliais/efeitos dos fármacos , Epitélio Corneano/efeitos dos fármacos , Humanos , Nitrilas/efeitos adversos , Encistamento de Parasitas/efeitos dos fármacos
10.
Korean J Parasitol ; 56(6): 553-558, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30630275

RESUMO

Pathogenic Acanthamoeba spp. cause granulomatous amoebic encephalitis and keratitis. Acanthamoeba keratitis (AK) is a rare but serious ocular infection that can result in permanent visual impairment or blindness. However, pathogenic factors of AK remain unclear and treatment for AK is arduous. Expression levels of proteins secreted into extracellular space were compared between A. castellanii pathogenic (ACP) and non-pathogenic strains. Two-dimensional polyacrylamide gel electrophoresis revealed 123 differentially expressed proteins, including 34 increased proteins , 7 qualitative increased proteins, 65 decreased proteins, and 17 qualitative decreased proteins in ACP strain. Twenty protein spots with greater than 5-fold increase in ACP strain were analyzed by liquid chromatography triple quadrupole mass spectrometry. These proteins showed similarity each to inosine-uridine preferring nucleoside hydrolase, carboxylesterase, oxygen-dependent choline dehydrogenase, periplasmic-binding protein proteinases and hypothetical proteins. These proteins expressed higher in ACP may provide some information to understand pathogenicity of Acanthamoeba.


Assuntos
Acanthamoeba castellanii/metabolismo , Espaço Extracelular/química , Proteínas de Protozoários/análise , Acanthamoeba castellanii/crescimento & desenvolvimento , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Proteômica
11.
Korean J Parasitol ; 55(2): 109-114, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28506031

RESUMO

Protein arginine methyltransferase (PRMT) is an important epigenetic regulator in eukaryotic cells. During encystation, an essential process for Acanthamoeba survival, the expression of a lot of genes involved in the encystation process has to be regulated in order to be induced or inhibited. However, the regulation mechanism of these genes is yet unknown. In this study, the full-length 1,059 bp cDNA sequence of Acanthamoeba castellanii PRMT1 (AcPRMT1) was cloned for the first time. The AcPRMT1 protein comprised of 352 amino acids with a SAM-dependent methyltransferase PRMT-type domain. The expression level of AcPRMT1 was highly increased during encystation of A. castellanii. The EGFP-AcPRMT1 fusion protein was distributed over the cytoplasm, but it was mainly localized in the nucleus of Acanthamoeba. Knock down of AcPRMT1 by synthetic siRNA with a complementary sequence failed to form mature cysts. These findings suggested that AcPRMT1 plays a critical role in the regulation of encystation of A. castellanii. The target gene of AcPRMT1 regulation and the detailed mechanisms need to be investigated by further studies.


Assuntos
Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Encistamento de Parasitas/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/isolamento & purificação , Acanthamoeba castellanii/citologia , Acanthamoeba castellanii/crescimento & desenvolvimento , Citoplasma/genética , Citoplasma/metabolismo , DNA de Protozoário/genética , Expressão Gênica/genética , Fusão Gênica , Proteínas de Fluorescência Verde , Encistamento de Parasitas/fisiologia , Proteína-Arginina N-Metiltransferases/química
12.
Korean J Parasitol ; 55(2): 115-120, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28506032

RESUMO

Encystation mediating cyst specific cysteine proteinase (CSCP) of Acanthamoeba castellanii is expressed remarkably during encystation. However, the molecular mechanism involved in the regulation of CSCP gene expression remains unclear. In this study, we focused on epigenetic regulation of gene expression during encystation of Acanthamoeba. To evaluate methylation as a potential mechanism involved in the regulation of CSCP expression, we first investigated the correlation between promoter methylation status of CSCP gene and its expression. A 2,878 bp of promoter sequence of CSCP gene was amplified by PCR. Three CpG islands (island 1-3) were detected in this sequence using bioinformatics tools. Methylation of CpG island in trophozoites and cysts was measured by bisulfite sequence PCR. CSCP promoter methylation of CpG island 1 (1,633 bp) was found in 8.2% of trophozoites and 7.3% of cysts. Methylation of CpG island 2 (625 bp) was observed in 4.2% of trophozoites and 5.8% of cysts. Methylation of CpG island 3 (367 bp) in trophozoites and cysts was both 3.6%. These results suggest that DNA methylation system is present in CSCP gene expression of Acanthamoeba. In addition, the expression of encystation mediating CSCP is correlated with promoter CpG island 1 hypomethylation.


Assuntos
Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/genética , Cisteína Proteases/genética , Metilação de DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Encistamento de Parasitas/genética , Acanthamoeba castellanii/enzimologia , Ilhas de CpG/genética , Cisteína Proteases/fisiologia , Epigênese Genética/genética , Metilação , Encistamento de Parasitas/fisiologia , Regiões Promotoras Genéticas/genética , Trofozoítos
13.
Korean J Parasitol ; 54(6): 697-702, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28095653

RESUMO

Acanthamoeba keratitis has been increasing in recent years. Main risk factors are contact lens wear and their cleaning solutions. Most contact lens wearers use multipurpose disinfecting solutions (MPDS) for cleansing and disinfecting microorganisms because of its convenience. We determined amoebicidal effects of MPDS made in Korea and their cytotoxicity on human corneal epithelium cells. Fifteen commercial MPDS (A to O) were tested for their amoebicidal effects on Acanthamoeba castellanii trophozoites and cysts by using a most probable number (MPN) technique. Among them, 7 kinds of MPDS showed little or no amoebicidal effects for 24 hr exposure. Solutions A, B, G, H, L, and O showed positive amoebicidal effects, and solutions M and N killed almost all trophozoites and cysts after 24 hr exposure. However, 50%-N solution showed 56% cytotoxicity on human corneal epithelial cells within 4 hr exposure, and 50%-O solution also showed 62% cytotoxicity on human cells within 4 hr exposure. Solution A did not show any cytotoxicity on human cells. These results revealed that most MPDS made in Korea were ineffective to kill Acanthamoeba. The solutions having amoebicidal activity also showed high levels of cytotoxicity on human corneal epithelial cells. New formulations for improved MPDS that are amoebicidal but safe for host cells are needed to prevent Acanthamoeba keratitis.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/fisiologia , Soluções para Lentes de Contato/farmacologia , Soluções para Lentes de Contato/toxicidade , Células Epiteliais/efeitos dos fármacos , Humanos , Coreia (Geográfico) , Viabilidade Microbiana
14.
Korean J Parasitol ; 54(2): 133-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27180570

RESUMO

Encystation is an essential process for Acanthamoeba survival under nutrient-limiting conditions and exposure to drugs. The expression of several genes has been observed to increase or decrease during encystation. Epigenetic processes involved in regulation of gene expression have been shown to play a role in several pathogenic parasites. In the present study, we identified the protein arginine methyltransferase 5 (PRMT5), a known epigenetic regulator, in Acanthamoeba castellanii. PRMT5 of A. castellanii (AcPRMT5) contained domains found in S-adenosylmethionine-dependent methyltransferases and in PRMT5 arginine-N-methyltransferase. Expression levels of AcPRMT5 were increased during encystation of A. castellanii. The EGFP-PRMT5 fusion protein was mainly localized in the nucleus of trophozoites. A. castellanii transfected with siRNA designed against AcPRMT5 failed to form mature cysts. The findings of this study lead to a better understanding of epigenetic mechanisms behind the regulation of encystation in cyst-forming pathogenic protozoa.


Assuntos
Acanthamoeba castellanii/enzimologia , Epigênese Genética/genética , Encistamento de Parasitas/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas de Protozoários/genética , Acanthamoeba castellanii/genética , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética , Encistamento de Parasitas/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Alinhamento de Sequência , Trofozoítos/fisiologia
15.
Korean J Parasitol ; 54(3): 329-34, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27417089

RESUMO

Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.


Assuntos
Actinas/genética , DNA de Protozoário/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Vaginite por Trichomonas/diagnóstico , Trichomonas vaginalis/isolamento & purificação , Feminino , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Vaginite por Trichomonas/parasitologia , Trichomonas vaginalis/genética
16.
Korean J Parasitol ; 54(1): 75-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26951983

RESUMO

This study explored epidemiological trends in trichomoniasis in Daegu, South Korea. Wet mount microscopy, PCR, and multiplex PCR were used to test for Trichomonas vaginalis in vaginal swab samples obtained from 621 women visiting 2 clinics in Daegu. Of the 621 women tested, microscopy detected T. vaginalis in 4 (0.6%) patients, PCR detected T. vaginalis in 19 (3.0%) patients, and multiplex PCR detected T. vaginalis in 12 (1.9%) patients. Testing via PCR demonstrated high sensitivity and high negative predictive value for T. vaginalis. Among the 19 women who tested positive for T. vaginalis according to PCR, 94.7% (18/19) reported vaginal signs and symptoms. Notably, more than 50% of T. vaginalis infections occurred in females younger than 30 years old, and 58% were unmarried. Multiplex PCR, which simultaneously detects pathogens from various sexually transmitted infections, revealed that 91.7% (11/12) of patients were infected with 2 or more pathogens. Mycoplasma hominis was the most prevalent co-infection pathogen with T. vaginalis, followed by Ureaplasma urealyticum and Chlamydia trachomatis. Our results indicate that PCR and multiplex PCR are the most sensitive tools for T. vaginalis diagnosis, rather than microscopy which has been routinely used to detect T. vaginalis infections in South Korea. Therefore, clinicians should take note of the high prevalence of T. vaginalis infections among adolescent and young women in order to prevent persistent infection and transmission of this disease.


Assuntos
Tricomoníase/epidemiologia , Adolescente , Adulto , Instituições de Assistência Ambulatorial/estatística & dados numéricos , Feminino , Humanos , Microscopia/normas , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/normas , Reação em Cadeia da Polimerase/normas , Valor Preditivo dos Testes , Prevalência , República da Coreia/epidemiologia , Sensibilidade e Especificidade , Tricomoníase/prevenção & controle , Trichomonas vaginalis/fisiologia , Esfregaço Vaginal/normas , Adulto Jovem
17.
Antimicrob Agents Chemother ; 59(7): 4020-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896709

RESUMO

Acanthamoeba cysts are resistant to extreme physical and chemical conditions. Autophagy is an essential pathway for encystation of Acanthamoeba cells. To evaluate the possibility of an autophagic Acanthamoeba encystation mechanism, we evaluated autophagy inhibitors, such as 3-methyladenine (3MA), LY294002, wortmannin, bafilomycin A, and chloroquine. Among these autophagy inhibitors, the use of 3MA and chloroquine showed a significant reduction in the encystation ratio in Acanthamoeba cells. Wortmannin also inhibited the formation of mature cysts, while LY294002 and bafilomycin A did not affect the encystation of Acanthamoeba cells. Transmission electron microscopy revealed that 3MA and wortmannin inhibited autophagy formation and that chloroquine interfered with the formation of autolysosomes. Inhibition of autophagy or autolysosome formation resulted in a significant block in the encystation in Acanthamoeba cells. Clinical treatment with 0.02% polyhexamethylene biguanide (PHMB) showed high cytopathic effects on Acanthamoeba trophozoites and cysts; however, it also revealed high cytopathic effects on human corneal epithelial cells. In this study, we investigated effects of the combination of a low (0.00125%) concentration of PHMB with each of the autophagy inhibitors 3MA, wortmannin, and chloroquine on Acanthamoeba and human corneal epithelial cells. These new combination treatments showed low cytopathic effects on human corneal cells and high cytopathic effects on Acanthamoeba cells. Taken together, these results provide fundamental information for optimizing the treatment of Acanthamoeba keratitis.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba/efeitos dos fármacos , Antiprotozoários/uso terapêutico , Autofagia/efeitos dos fármacos , Ceratite/tratamento farmacológico , Acanthamoeba/ultraestrutura , Ceratite por Acanthamoeba/parasitologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Córnea/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Humanos , Ceratite/parasitologia , Lisossomos/efeitos dos fármacos , Trofozoítos/efeitos dos fármacos
18.
Exp Parasitol ; 159: 46-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26297678

RESUMO

Autophagy is a well conserved, catabolic process in eukaryotic cells. Previously, we identified two novel ubiquitin like conjugation systems (Atg12 and Atg8) in the autophagy process of Acanthamoeba castellanii. To obtain more specific information on the Atg12 ubiquitin like conjugation system during encystation of Acanthamoeba, we characterized the function of Atg12. Knockdown of AcAg12 in trophozoites resulted in inhibition of cyst formation. Analysis of subcellular localization showed that AcAtg12 was evenly distributed in the trophozoites during early encystation, started to accumulate partially as dots or fragments, and then co-localized with the vesicle of the autophagic structure. However, the mRNA expression of AcAtg12 was maintained at a constant level during encystation as well as in trophozoites. Ultrastructural analysis with TEM showed that AcAtg12-knockdown cells showed vacuolization, lack of cyst wall formation, and numerical decline of autophagic structures, compared with the control cells. Interestingly, these knockdown cells began to round-up and swell, and then burst at 144 h post encystation. Taken together, our results might provide a better understanding of the Atg12 UBL conjugation system in Acanthamoeba and other cyst forming protozoan parasites.


Assuntos
Acanthamoeba castellanii/fisiologia , Autofagia/fisiologia , Encistamento de Parasitas/fisiologia , Proteínas de Protozoários/fisiologia , Acanthamoeba castellanii/ultraestrutura , Sequência de Aminoácidos , Regulação da Expressão Gênica , Inativação Gênica , Microscopia Eletrônica de Transmissão , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Trofozoítos/fisiologia , Trofozoítos/ultraestrutura
19.
Parasitol Res ; 114(3): 1189-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25563616

RESUMO

Acanthamoeba is an opportunistic protozoan parasite responsible for different diseases in humans, such as granulomatous amoebic encephalitis and amoebic keratitis. Tigecycline, a third-generation tetracycline antibiotic, has potential activity to treat most of the antibiotic resistant bacterial infections. The effects of tigecycline in eukaryotic cells as well as parasites are less well studied. In the present study, we tested the effects of tigecycline on trophozoites of Acanthamoeba castellanii. The inhibitory effect of tigecycline on Acanthamoeba was determined by resazurin reduction and trypan blue exclusion assays. We found that tigecycline significantly inhibited the growth of Acanthamoeba (46.4 % inhibition at the concentration of 100 µM) without affecting cell viability and induction of encystation, whereas other tetracycline groups of antibiotics such as tetracycline and doxycycline showed no inhibitory effects. Furthermore, tigecycline decreased cellular adenosine triphosphate (ATP) level by 26 % than the control and increased mitochondrial mass, suggesting mitochondrial dysfunction in tigecycline-treated cells. These findings suggest that mitochondrial dysfunction with decreased ATP production might play an important mechanism of tigecycline in suppression of Acanthamoeba proliferation.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Antibacterianos/farmacologia , Minociclina/análogos & derivados , Acanthamoeba/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Encefalite , Minociclina/farmacologia , Oxazinas , Tigeciclina , Trofozoítos/efeitos dos fármacos , Xantenos
20.
Malar J ; 13: 248, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24981710

RESUMO

BACKGROUND: Malaria that is caused by Plasmodium vivax is the most widely distributed human malaria. Its recent resurgence in many parts of the world, including the Republic of Korea (ROK), emphasizes the importance of improved access to the early and accurate detection of P. vivax to reduce disease burden. In this study, a rapid and efficient loop-mediated isothermal amplification (LAMP)-based method was developed and validated using blood samples from malaria-suspected patients. METHOD: A LAMP assay targeting the α-tubulin gene for the detection of P. vivax was developed with six primers that recognize different regions of the target gene. The diagnostic performance of the α-tubulin LAMP assay was compared to three other tests: microscopic examinations, rapid diagnostic tests (RDTs), and nested polymerase chain reactions (PCRs) using 177 whole blood specimens obtained from ROK military personnel from May to December 2011. RESULTS: The α-tubulin LAMP assay was highly sensitive with a detection limit of 100 copies of P. vivax α-tubulin gene per reaction within 50 min. It specifically amplified the target gene only from P. vivax. Validation of the α-tubulin LAMP assay showed that the assay had the highest sensitivity (P < 0.001 versus microscopy; P = 0.0023 versus RDT) when nested PCR was used as the gold standard and better agreement (concordance: 94.9%, kappa value: 0.865) with nested PCR than RDT and microscopy. A Receiver Operation Characteristics analysis showed that the diagnostic accuracy of the α-tubulin LAMP assay for vivax malaria was higher (Area Under Curve = 0.908) than RDT and microscopy. CONCLUSION: This study showed that the P. vivax α-tubulin LAMP assay, which can be used to diagnose early infections of vivax malaria, is an alternative molecular diagnostic tool and a point-of-care test that may help to prevent transmission in endemic areas.


Assuntos
DNA de Protozoário/sangue , Malária Vivax/sangue , Técnicas de Amplificação de Ácido Nucleico/métodos , Parasitemia/sangue , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/genética , Tubulina (Proteína)/genética , Adulto , Área Sob a Curva , Corantes Azur , Sequência de Bases , Cromatografia de Afinidade , DNA de Protozoário/genética , Humanos , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Masculino , Dados de Sequência Molecular , Parasitemia/diagnóstico , Parasitemia/parasitologia , Plasmodium vivax/genética , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase , Curva ROC , Sensibilidade e Especificidade , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA