RESUMO
Exosome-based therapy is an emerging novel approach for myocardial infarction (MI) treatment. Exosomes are identified as extracellular vesicles that are produced within multivesicular bodies in the cells' cytosols and then are secreted from the cells. Exosomes are 30-100 nm in diameter that are released from viable cells and are different from other secreted vesicles such as apoptotic bodies and microvesicles in their origin and contents such as RNAs, proteins, and nucleic acid. The recent advances in exosome research have demonstrated the role of these bionanovesicles in the physiological, pathological, and molecular aspects of the heart. The results of in vitro and preclinical models have shown that exosomes from different cardiac cells can improve cardiac function following MI. For example, mesenchymal stem cells (MSCs) and cardiac progenitor cells (CPCs) containing exosomes can affect the proliferation, survival, and differentiation of cardiac fibroblasts and cardiomyocytes. Moreover, MSCs- and CPCs-derived exosomes can enhance the migration of endothelial cells. Exosome-based therapy approaches augment the cardiac function by multiple means, such as reducing fibrosis, stimulation of vascular angiogenesis, and proliferation of cardiomyocytes that result in replacing damaged heart tissue with newly generated functional myocytes. This review article aims to briefly discuss the recent advancements in the role of secreted exosomes in myocardial repair by focusing on cardiac cells-derived exosomes.
Assuntos
Células Endoteliais/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Endoteliais/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Miócitos Cardíacos/patologiaRESUMO
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.