Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(21): 8185-9, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22505739

RESUMO

Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi-isolated ecosystem. At varying population size, cod expand/contract their distribution range and invade/retreat from the neighboring Gulf of Riga, thereby affecting the local prey population of herring and, indirectly, zooplankton and phytoplankton via top-down control. The Gulf of Riga can be considered for cod a "true sink" habitat, where in the absence of immigration from the source areas of the central Baltic Sea the cod population goes extinct due to the absence of suitable spawning grounds. Our results add a metaecosystem perspective to the ongoing intense scientific debate on the key role of top predators in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances.


Assuntos
Mudança Climática , Ecologia , Cadeia Alimentar , Gadus morhua/fisiologia , Comportamento Predatório/fisiologia , Animais , Ecossistema , Modelos Estatísticos , Oceanos e Mares , Densidade Demográfica , Dinâmica Populacional , Zooplâncton/fisiologia
2.
Proc Natl Acad Sci U S A ; 106(1): 197-202, 2009 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-19109431

RESUMO

Fisheries can have a large impact on marine ecosystems, because the effects of removing large predatory fish may cascade down the food web. The implications of these cascading processes on system functioning and resilience remain a source of intense scientific debate. By using field data covering a 30-year period, we show for the Baltic Sea that the underlying mechanisms of trophic cascades produced a shift in ecosystem functioning after the collapse of the top predator cod. We identified an ecological threshold, corresponding to a planktivore abundance of approximately 17 x 10(10) individuals, that separates 2 ecosystem configurations in which zooplankton dynamics are driven by either hydroclimatic forces or predation pressure. Abundances of the planktivore sprat above the threshold decouple zooplankton dynamics from hydrological circumstances. The current strong regulation by sprat of the feeding resources for larval cod may hinder cod recovery and the return of the ecosystem to a prior state. This calls for the inclusion of a food web perspective in management decisions.


Assuntos
Ecossistema , Cadeia Alimentar , Gadiformes , Dinâmica Populacional , Animais , Extinção Biológica , Peixes , Biologia Marinha , Oceanos e Mares
3.
Ambio ; 41(7): 699-708, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22430308

RESUMO

Since 2001/2002, the correlation between North Atlantic Oscillation index and biological variables in the North Sea and Baltic Sea fails, which might be addressed to a global climate regime shift. To understand inter-annual and inter-decadal variability in environmental variables, a new multivariate index for the Baltic Sea is developed and presented here. The multivariate Baltic Sea Environmental (BSE) index is defined as the 1st principal component score of four z-transformed time series: the Arctic Oscillation index, the salinity between 120 and 200 m in the Gotland Sea, the integrated river runoff of all rivers draining into the Baltic Sea, and the relative vorticity of geostrophic wind over the Baltic Sea area. A statistical downscaling technique has been applied to project different climate indices to the sea surface temperature in the Gotland, to the Landsort gauge, and the sea ice extent. The new BSE index shows a better performance than all other climate indices and is equivalent to the Chen index for physical properties. An application of the new index to zooplankton time series from the central Baltic Sea (Latvian EEZ) shows an excellent skill in potential predictability of environmental time series.


Assuntos
Monitoramento Ambiental , Animais , Países Bálticos , Análise Multivariada , Zooplâncton
4.
Proc Biol Sci ; 275(1644): 1793-801, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18460432

RESUMO

Anthropogenic disturbances intertwined with climatic changes can have a large impact on the upper trophic levels of marine ecosystems, which may cascade down the food web. So far it has been difficult to demonstrate multi-level trophic cascades in pelagic marine environments. Using field data collected during a 33-year period, we show for the first time a four-level community-wide trophic cascade in the open Baltic Sea. The dramatic reduction of the cod (Gadus morhua) population directly affected its main prey, the zooplanktivorous sprat (Sprattus sprattus), and indirectly the summer biomass of zooplankton and phytoplankton (top-down processes). Bottom-up processes and climate-hydrological forces had a weaker influence on sprat and zooplankton, whereas phytoplankton variation was explained solely by top-down mechanisms. Our results suggest that in order to dampen the occasionally harmful algal blooms of the Baltic, effort should be addressed not only to control anthropogenic nutrient inputs but also to preserve structure and functioning of higher trophic levels.


Assuntos
Ecossistema , Cadeia Alimentar , Modelos Biológicos , Animais , Biomassa , Peixes/crescimento & desenvolvimento , Oceanos e Mares , Plâncton/crescimento & desenvolvimento
5.
PLoS One ; 9(3): e90875, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614110

RESUMO

Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such as temperature, salinity and oxygen that are closely linked to atmospheric conditions. Little attention has been given, however, to the role of habitat heterogeneity in modulating the response of animal communities to external climate forcing. Here we investigate the long-term dynamics of Acartia spp., Temora longicornis, and Pseudocalanus acuspes, three dominant zooplankton species inhabiting different pelagic habitats in the Central Baltic Sea (CBS). We use the three copepods as indicator species for changes in the CBS zooplankton community and apply non-linear statistical modeling techniques to compare spatial population trends and to identify their drivers. We demonstrate that effects of climate variability and change depend strongly on species-specific habitat utilization, being more direct and pronounced at the upper water layer. We propose that the differential functional response to climate-related drivers in relation to strong habitat segregation is due to alterations of the species' environmental niches. We stress the importance of understanding how anticipated climate change will affect ecological niches and habitats in order to project spatio-temporal changes in species abundance and distribution.


Assuntos
Mudança Climática , Ecossistema , Zooplâncton/crescimento & desenvolvimento , Animais , Países Bálticos , Geografia , Modelos Estatísticos , Estações do Ano , Especificidade da Espécie , Fatores de Tempo
6.
PLoS One ; 7(7): e38410, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808007

RESUMO

Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.


Assuntos
Ecossistema , Modelos Biológicos , Zooplâncton/fisiologia , Animais , Mudança Climática , Humanos , Oceanos e Mares , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA