RESUMO
Cystatin F, a cysteine peptidase inhibitor, is a potent modulator of NK cytotoxicity. By inhibiting granule-mediated cytotoxicity pathway, cystatin F induces formation of non-functional NK cell stage, called split-anergy. We show that N-glycosylation determines the localization and cellular function of cystatin F. Cystatin F mostly exhibited high-mannose glycosylation in U-937 cells, both high-mannose and complex glycosylation in NK-92 and primary NKs, and predominantly complex glycosylation in super-charged NKs. Manipulating N-glycosylation with kifunensine increased high-mannose glycosylation of cystatin F and lysosome localisation, which decreased cathepsin C activity and reduced NK cytotoxicity. Mannose-6-phosphate could significantly reduce the internalization of extracellular cystatin F. By comparing NK cells with different cytotoxic potentials, we found that high-mannose cystatin F was strongly associated with lysosomes and cathepsin C in NK-92 cell line. In contrast, in highly cytotoxic super-charged NKs, cystatin F with complex glycosylation was associated with the secretory pathway and less prone to inhibit cathepsin C. Modulating glycosylation to alter cystatin F localisation could increase the cytotoxicity of NK cells, thereby enhancing their therapeutic potential for treating cancer patients.
Assuntos
Antineoplásicos , Cistatinas , Humanos , Glicosilação , Manose , Catepsina C/metabolismo , Células Matadoras Naturais/metabolismoRESUMO
Clitocybe nebularis lectin (CNL) is a GalNAcß1-4GlcNAc-binding lectin that exhibits an antiproliferative effect exclusively on the Jurkat leukemic T cell line by provoking homotypic aggregation and dose-dependent cell death. Cell death of Jurkat cells exhibited typical features of early apoptosis, but lacked the activation of initiating and executing caspases. None of the features of CNL-induced cell death were effectively blocked with the pan-caspase inhibitor or different cysteine peptidase inhibitors. Furthermore, CNL binding induced Jurkat cells to release the endogenous damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1). A plant lectin with similar glycan-binding specificity, Wisteria floribunda agglutinin (WFA) showed less selective toxicity and induced cell death in Jurkat, Tall-104, and Hut-87 cell lines. HMGB1 release was also detected when Jurkat cells were treated with WFA. We identified the CD45 and CD43 cell surface glycoproteins on Jurkat cells as the main targets for CNL binding. However, the blockade of CD45 phosphatase activity failed to block either CNL-induced homotypic agglutination or cell death. Overall, our results indicate that CNL triggers atypical cell death selectively on Jurkat cells, suggesting the potential applicability of CNL in novel strategies for treating and/or detecting acute T cell leukemia.
Assuntos
Agaricales/fisiologia , Morte Celular , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Lectinas de Plantas/metabolismo , Receptores de N-Acetilglucosamina/metabolismo , Humanos , Células JurkatRESUMO
New therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.
Assuntos
Catepsina B/antagonistas & inibidores , Catepsinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Animais , Catepsina B/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/química , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Transgênicos , Invasividade Neoplásica , Infiltração de Neutrófilos/efeitos dos fármacosRESUMO
Peptidases represent a large family of hydrolases present in all living organisms, which catalyze the degradation of peptide bonds in different biological processes.
Assuntos
Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismoRESUMO
Over the last 2 decades, several coronaviruses (CoVs) have crossed the species barrier into humans, causing highly prevalent and severe respiratory diseases, often with fatal outcomes. CoVs are a large group of enveloped, single-stranded, positive-sense RNA viruses, which encode large replicase polyproteins that are processed by viral peptidases to generate the nonstructural proteins (Nsps) that mediate viral RNA synthesis. Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets. Furthermore, CoVs utilize the activation of their envelope spike glycoproteins by host cell peptidases to gain entry into cells. CoVs have evolved multiple strategies for spike protein activation, including the utilization of lysosomal cysteine cathepsins. In this review, viral and host peptidases involved in CoV cell entry and replication are discussed in depth, with an emphasis on papain-like cysteine cathepsins. Furthermore, important findings on cysteine peptidase inhibitors with regard to virus attenuation are highlighted as well as the potential of such inhibitors for future treatment strategies for CoV-related diseases.
Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/virologia , Coronavirus/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Infecções por Coronavirus/tratamento farmacológico , Humanos , Replicação Viral/efeitos dos fármacosRESUMO
Modern anticancer therapies favor a targeted approach. Tyrosine kinase inhibitors (TKIs) are drugs that target molecular pathways involved in various types of malignancies. Although TKIs are safe and well tolerated, they remain not completely selective; e.g., endocrine-mediated adverse events have been observed with their use. In the present study, the effects of seven TKIs were determined on the activities of androgen receptor, estrogen receptor α (ERα), glucocorticoid receptor and thyroid receptor in vitro using stably transfected cell lines expressing firefly luciferase reporter gene: AR-EcoScreen, hERα-HeLa9903, MDA-kb2, and GH3.TRE-Luc cells, respectively. Antiandrogenic activity was seen for erlotinib, estrogenic activity for imatinib, antiestrogenic activity for dasatinib, erlotinib, nilotinib, regorafenib and sorafenib, glucocorticoid activity for erlotinib and ibrutinib, antiglucocorticoid activity for regorafenib and sorafenib, and antithyroid activity for ibrutinib. Additionally, synergism was seen for 1-5 µM dasatinib and 500 nM hydrocortisone combination for glucocorticoid activity in MDA-kb2 cells. The estrogenic activity of imatinib was confirmed as mediated through ERα, and interference of the TKIs with the reporter gene assays was ruled out in a cell-lysate-based firefly luciferase enzyme inhibition assay. Imatinib in combination with 4-hydroxytamoxifen showed concentration-dependent effects on the metabolic activity of ERα-expressing AN3CA, MCF-7, and SKOV3 cells, and on cell proliferation and adhesion of MCF-7 cells. These findings contribute to the understanding of the endocrine effects of TKIs, in terms of toxicity and effectiveness, and define the need to further evaluate the endocrine disrupting activities of TKIs to safeguard human and environmental health.
Assuntos
Antineoplásicos/farmacologia , Antitireóideos/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptores de Glucocorticoides/antagonistas & inibidores , Antagonistas de Receptores de Andrógenos , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Hormônios TireóideosRESUMO
Natural killer (NK) cells represent critical effectors of anti-tumor immune responses due to their ability to target tumor cells that escape recognition by the adaptive arm of the immune system. NK cell efficacy depends on multiple factors, including their propensity to infiltrate tumors, to reach activation threshold, and to differentiate into mature cytotoxic cells. The tumor microenvironment counteracts protective immunity by delivering anti-inflammatory signals, which stimulate the development of myeloid-derived suppressor cells (MDSC). MDSCs utilize numerous proximity-dependent and independent mechanisms to suppress functions of cytotoxic T lymphocytes and NK cells. Importantly, substantial part of their suppressive activity depends on peptidases. MDSC-derived peptidases incapacitate NK cells by shedding ligands for their activating receptors and by processing key cytokines involved in regulation of immune responses. Moreover, they are needed for sustaining the immunosuppressive loop through promotion of MDSC accumulation, expansion, and enhancement of their survival. Peptidases are at the forefront of cancer progression. However, their disparate roles in immune cells have only recently become appreciated in orchestration of the cancer immune responses. Studies that focused on elucidating the potential of peptidase inhibitors in regulation of the anti-tumor immune responses have led to renewed interest in clinical development of peptidase inhibitors. In parallel, they inspired the development of novel theranostics, that exploit increased activity of peptidases in infiltrating immune cells for targeted drug release or activation of imaging probes.
Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Células Matadoras Naturais , Neoplasias/terapia , Peptídeo Hidrolases , Microambiente TumoralRESUMO
The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.
Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Piperazina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Nitritos/análise , Piperazina/síntese química , Piperazina/química , Relação Estrutura-AtividadeRESUMO
The Special Issue "Proteases: Role and Function in Cancer" aimed to focus on basic and translational research to highlight the role of peptidases in tumor development and to assess their potential in cancer diagnosis and therapy [...].
Assuntos
Neoplasias , Peptídeo Hidrolases , Endopeptidases , Humanos , Pesquisa Translacional BiomédicaRESUMO
We introduce a new family of fungal protease inhibitors with ß-trefoil fold from the mushroom Coprinopsis cinerea, named cocaprins, which inhibit both cysteine and aspartic proteases. Two cocaprin-encoding genes are differentially expressed in fungal tissues. One is highly transcribed in vegetative mycelium and the other in the stipes of mature fruiting bodies. Cocaprins are small proteins (15 kDa) with acidic isoelectric points that form dimers. The three-dimensional structure of cocaprin 1 showed similarity to fungal ß-trefoil lectins. Cocaprins inhibit plant C1 family cysteine proteases with Ki in the micromolar range, but do not inhibit the C13 family protease legumain, which distinguishes them from mycocypins. Cocaprins also inhibit the aspartic protease pepsin with Ki in the low micromolar range. Mutagenesis revealed that the ß2-ß3 loop is involved in the inhibition of cysteine proteases and that the inhibitory reactive sites for aspartic and cysteine proteases are located at different positions on the protein. Their biological function is thought to be the regulation of endogenous proteolytic activities or in defense against fungal antagonists. Cocaprins are the first characterized aspartic protease inhibitors with ß-trefoil fold from fungi, and demonstrate the incredible plasticity of loop functionalization in fungal proteins with ß-trefoil fold.
Assuntos
Agaricales , Ácido Aspártico Proteases , Cisteína Proteases , Lotus , Agaricales/química , Ácido Aspártico Endopeptidases , Ácido Aspártico Proteases/genética , Cisteína , Cisteína Proteases/genética , Lotus/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/químicaRESUMO
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.
Assuntos
Neoplasias Encefálicas/metabolismo , Catepsina Z/metabolismo , Glioblastoma/metabolismo , Fosfopiruvato Hidratase/metabolismo , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Catepsina Z/antagonistas & inibidores , Catepsina Z/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Regulação para CimaRESUMO
BACKGROUND: Neurotrophins can activate multiple signalling pathways in neuronal cells through binding to their cognate receptors, leading to neurotrophic processes such as cell survival and differentiation. γ-Enolase has been shown to have a neurotrophic activity that depends on its translocation towards the plasma membrane by the scaffold protein γ1-syntrophin. The association of γ-enolase with its membrane receptor or other binding partners at the plasma membrane remains unknown. METHODS: In the present study, we used immunoprecipitation and immunofluorescence to show that γ-enolase associates with the intracellular domain of the tropomyosin receptor kinase (Trk) family of tyrosine kinase receptors at the plasma membrane of differentiated SH-SY5Y cells. RESULTS: In differentiated SH-SY5Y cells with reduced expression of γ1-syntrophin, the association of γ-enolase with the Trk receptor was diminished due to impaired translocation of γ-enolase towards the plasma membrane or impaired Trk activity. Treatment of differentiated SH-SY5Y cells with a γ-Eno peptide that mimics γ-enolase neurotrophic activity promoted Trk receptor internalisation and endosomal trafficking, as defined by reduced levels of Trk in clathrin-coated vesicles and increased levels in late endosomes. In this way, γ-enolase triggers Rap1 activation, which is required for neurotrophic activity of γ-enolase. Additionally, the inhibition of Trk kinase activity by K252a revealed that increased SH-SY5Y cell survival and neurite outgrowth mediated by the γ-Eno peptide through activation of signalling cascade depends on Trk kinase activity. CONCLUSIONS: These data therefore establish the Trk receptor as a binding partner of γ-enolase, whereby Trk endosomal trafficking is promoted by γ-Eno peptide to mediate its neurotrophic signalling. Video abstract.
Assuntos
Diferenciação Celular , Neuritos , Fosfopiruvato Hidratase , Receptor trkA , Linhagem Celular Tumoral , Humanos , Neuritos/fisiologia , Fosfopiruvato Hidratase/metabolismo , Receptor trkA/metabolismoRESUMO
We have previously demonstrated that natural killer (NK) cells are the main immune effectors that can mediate selection and differentiation of different cancer stem cells and undifferentiated tumors via lysis and secreted or membrane-bound interferon-γ and tumor necrosis factor-α, respectively. This leads to growth inhibition and tumor metastasis curtailment. In this review, we present an overview of our findings on NK cell biology and its significance in selection and differentiation of stem-like tumors using in vitro and in vivo studies conducted in nonobese diabetic/severe combined immunodeficiency (scid)/interleukin-Rγ--, humanized-bone-marrow/liver/thymus (hu-BLT) mice, and those of human cancer patients. Moreover, we present recent advances in NK cell expansion and therapeutic delivery and discuss the superiority of allogeneic supercharged NK cells over their autologous counterparts for cancer treatment. We review potential loss of NK cell numbers and function at neoplastic and preneoplastic stages of tumorigenesis as a potential mechanism for pancreatic cancer induction and progression. We believe that NK cells should be placed highly in the armamentarium of tumor immunotherapy due to their indispensable role in targeting cancer stem-like/poorly differentiated tumors and a variety of other key NK cell functions that are discussed in this report, including their role in CD8+ T-cell expansion and targeting gene knockout or dedifferentiated tumors. The combination of allogeneic supercharged NK cells and other immunotherapeutic strategies such as oncolytic viruses, antibody-dependent cellular cytotoxicity-inducing antibodies, checkpoint inhibitors, chimeric antigen receptor (CAR)-T cells and CAR-NK cells, chemotherapeutics, and radiotherapeutic strategies can be used for optimal eradication of tumors.
Assuntos
Imunidade , Hospedeiro Imunocomprometido , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores , Diferenciação Celular/imunologia , Terapia Combinada , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos Knockout , Neoplasias/patologia , Neoplasias/terapiaRESUMO
Cathepsin X is a lysosomal peptidase that is involved in tumour progression and represents a potential target for therapeutic interventions. In addition, it regulates important functions of immune cells and is implicated in the modulation of tumour cell-immune cell crosstalk. Selective cathepsin X inhibitors have been proposed as prospective antitumour agents to prevent cancer progression; however, their impact on the antitumour immune response has been overlooked. Previous studies indicate that the migration and adhesion of T cells and dendritic cells are affected by diminished cathepsin X activity. Meanwhile, the influence of cathepsin X inhibition on natural killer (NK) cell function has not yet been explored. Here, we examined the localization patterns of cathepsin X and the role of its inhibitors on the cytotoxicity of cell line NK-92, which is used for adoptive cellular immunotherapy in cancer patients. NK-92 cells depend on lymphocyte function-associated antigen 1 (LFA-1) to form stable immunoconjugates with target cells, providing, in this way, optimal cytotoxicity. Since LFA-1 is a substrate for cathepsin X activity in other types of cells, we hypothesized that cathepsin X could disturb the formation of NK-92 immunoconjugates. Thus, we employed cathepsin X reversible and irreversible inhibitors and evaluated their effects on the NK-92 cell interactions with target cells and on the NK-92 cell cytotoxicity. We show that cathepsin X inhibition does not impair stable conjugate formation or the lytic activity of NK-92 cells. Similarly, the conjugate formation between Jurkat T cells and target cells was not affected by cathepsin X activity. Unlike in previous migration and adhesion studies on T cells, in NK-92 cells cathepsin X was not co-localized with LFA-1 at the plasma membrane but was, rather, redistributed to the cytotoxic granules and secreted during degranulation.
Assuntos
Catepsinas/farmacologia , Grânulos Citoplasmáticos/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Humanos , Imunoterapia Adotiva/métodos , Células Jurkat , Células K562 , Neoplasias/tratamento farmacológico , Linfócitos T/efeitos dos fármacosRESUMO
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.
Assuntos
Linfócitos T CD4-Positivos/metabolismo , Cisteína/metabolismo , Inibidores de Proteases/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Catepsina C/metabolismo , Catepsina L/metabolismo , Linhagem Celular Tumoral , Células Clonais , Granzimas/metabolismo , Humanos , Células Jurkat , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/fisiologia , Linfócitos T Citotóxicos/metabolismoRESUMO
Increased proteolytic activity of cysteine cathepsins has long been known to facilitate malignant progression, and it has also been associated with tumor-promoting roles of myeloid-derived suppressor cells (MDSCs). Consequently, cysteine cathepsins have gained much attention as potential targets for cancer therapies. However, cross-talk between tumor cells and MDSCs needs to be taken into account when studying the efficacy of cathepsin inhibitors as anti-cancer agents. Here, we demonstrate the potential of the MDA-MB-231 breast cancer cell line to generate functional MDSCs from CD14+ cells of healthy human donors. During this transition to MDSCs, the overall levels of cysteine cathepsins increased, with the largest responses for cathepsins L and X. We used small-molecule inhibitors of cathepsins L and X (i.e., CLIK-148, Z9, respectively) to investigate their functional impact on tumor cells and immune cells in this co-culture system. Interactions with peripheral blood mononuclear cells reduced MDA-MB-231 cell invasion, while inhibition of cathepsin X activity by Z9 restored invasion. Inhibition of cathepsin L activity using CLIK-148 resulted in significantly increased CD8+ cytotoxicity. Of note, inhibition of cathepsins L and X in separate immune or tumor cells did not promote these functional changes. Together, our findings underlie the importance of tumor cell-immune cell interactions in the evaluation of the anti-cancer potential of cysteine cathepsin inhibitors.
Assuntos
Catepsina L/metabolismo , Cisteína/metabolismo , Células Supressoras Mieloides/metabolismo , Neoplasias/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares/metabolismo , Invasividade Neoplásica/patologia , Neoplasias/patologia , Células PC-3RESUMO
Cathepsins are lysosomal peptidases involved in intracellular protein catabolism as well as in various other physiological and pathological processes. Several members of the family, most notably cathepsins B, S, K and L, are frequently overexpressed in cancer and have been associated with remodeling of the proteins of the extracellular matrix, a process leading to tumor cell migration, invasion and metastasis. In addition, lysosomal cathepsins play a role in innate and adaptive immunity, regulation of antigen presentation, Toll-like receptor signaling, cytokine secretion, apoptosis, autophagy, differentiation, migration and cytotoxicity. In cancer, the cells of innate immunity, such as myeloid cells, are often subverted to the regulatory immunosuppressive phenotype. Most studies indicate that lysosomal cathepsins reinforce the pro-tumoral activity of myeloid-derived suppressor cells and tumor-associated macrophages as well as of neutrophils. On the other hand, in cytotoxic natural killer cells, tumor cells suppress lysosomal peptidases in their activation of perforin and granzymes, thus diminishing their killing ability. With multifaceted actions, lysosomal peptidases constitute an important regulatory mechanism for fine-tuning the anti-tumor immune response.
Assuntos
Imunidade Inata , Lisossomos/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Biomarcadores , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Imunidade , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/patologia , Transdução de Sinais , Receptores Toll-Like/metabolismoRESUMO
Cysteine cathepsins are lysosomal peptidases involved on one hand in general intracellular protein degradation and, on the other, in the regulation of a number of specific physiological processes. Their integral role in extracellular matrix degradation and in processing growth factors, hormones and adhesion proteins is a driving force in cancer progression, triggering tumor proliferation, invasion, angiogenesis and metastasis. Cancer stem cells are proposed to be a main factor of tumor initialization, heterogeneity and resistance to therapy. Recent studies have uncovered increased expression, aberrant localization and disturbed functions of certain cysteine cathepsins in these cells, in particular in glioblastoma stem cells. Here, we review the research that have underlined the expression patterns and roles of cysteine cathepsins in cancer stem cells, and emphasize the involvement of cysteine cathepsins in caspase-independent cell death and in regulating interaction between cancer stem cells and immune cells such as natural killer cells.
Assuntos
Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Lisossomos/enzimologia , Neoplasias/enzimologia , Células-Tronco Neoplásicas/enzimologia , Animais , Apoptose/genética , Catepsinas/genética , Cisteína Endopeptidases/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismoRESUMO
We have recently shown that natural killer (NK) cells select and differentiate cancer stem cells (CSCs)/undifferentiated tumors via secreted and membrane bound IFN-gamma (IFN-γ) and TNF-alpha (TNF-α), preventing tumor growth and inducing remodeling of the tumor microenvironment. Since many conventional therapeutic strategies, including chemotherapy and radiotherapy remain fairly unsuccessful in treating CSCs/poorly differentiated tumors, there has been an increasing interest in NK cell-targeted immunotherapy for the treatment of aggressive tumors. In our recent studies, we used humanized-BLT (hu-BLT) mouse model with transplanted human bone marrow, liver and thymus to demonstrate the efficacy of adoptive transfer of ex vivo expanded, super-charged NK cells in selection and differentiation of stem-like tumors within the context of a fully reconstituted human immune system. Furthermore, we have demonstrated that CSCs differentiated with split-anergized NK cells prior to implantation in hu-BLT mice were not able to grow or metastasize. However, when NK cell-mediated tumor differentiation was blocked by the addition of antibodies to IFN-γ and TNF-α, tumors grew and metastasized. In this review, we present current advances in NK cell expansion and therapeutic delivery, and discuss the utility of allogeneic super-charged NK cells in treatment of cancer patients. In addition, NK suppression occurs not only at the stage of overt cancer, but also at the pre-neoplastic stage. Therefore, due to the indispensable role of NK cells in targeting CSCs/undifferentiated tumors and their role in differentiation of the tumors, NK cells should be placed high in the armamentarium of tumor immunotherapy.
Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Bucais/imunologia , Células-Tronco Neoplásicas/imunologia , Neoplasias Pancreáticas/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Imunoterapia , Neoplasias Bucais/patologia , Neoplasias Bucais/terapia , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Carga Tumoral/imunologiaRESUMO
Lysosomal cysteine peptidase cathepsin B (catB) is an important tumor-promoting factor involved in tumor progression and metastasis representing a relevant target for the development of new antitumor agents. In the present study, we synthesized 11 ruthenium compounds bearing either the clinical agent nitroxoline that was previously identified as potent selective reversible inhibitor of catB activity or its derivatives. We demonstrated that organoruthenation is a viable strategy for obtaining highly effective and specific inhibitors of catB endo- and exopeptidase activity, as shown using enzyme kinetics and microscale thermophoresis. Furthermore, we showed that the novel metallodrugs by catB inhibition significantly impair processes of tumor progression in in vitro cell based functional assays at low noncytotoxic concentrations. Generally, by using metallodrugs we observed an improvement in catB inhibition, a reduction of extracellular matrix degradation and tumor cell invasion in comparison to free ligands, and a correlation with the reactivity of the monodentate halide leaving ligand.