Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Dev Biol ; 485: 70-79, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248548

RESUMO

Caste development in social insects requires the coordination of molting and metamorphosis during postembryonic development. In termites, i.e., hemimetabolous eusocial insects, caste fate is determined during postembryonic development. However, it is not fully understood how the mechanisms of molting/metamorphosis are regulated in the course of differentiation between reproductive and sterile castes. In termites, only reproductives derived from alates are imagos and other sterile castes (including developmentally-terminal soldier caste) are basically juveniles or nymphs. Furthermore, supplementary reproductives that appear when the original queens and kings die or become senescent, exhibit larval features such as winglessness, and are called neotenics. Therefore, the question of whether neotenics are larvae or imagos is still under debate. In this study, by inducing female neotenic differentiation in a damp-wood termite Hodotermopsis sjostedti, morphological investigations together with juvenile hormone (JH) quantification and expression/functional analyses of genes responsible for molting and/or metamorphosis were carried out. JH titer and expression of one of the downstream genes (Kr-h1) were shown to be temporarily lowered, but increased just prior to the molt into neotenics, while consistently lowered in imaginal molt (i.e., alate differentiation). In contrast, ecdysone-related genes (EcR and E93) were upregulated at both neotenic and alate differentiation, suggesting that the heterochronic actions of ecdysone and JH lead the neotenic differentiation. Moreover, expression analyses, supported by reverse genetic experiments, showed that EcR and E93 were specifically upregulated in genital sternites (EcR and E93) and ovaries (E93) and required for the development of imaginal characters. These results suggest that the resultant mosaic phenotype of female neotenics is due to modular responses of different body parts to hormonal actions.


Assuntos
Isópteros , Animais , Ecdisona/metabolismo , Feminino , Isópteros/genética , Isópteros/metabolismo , Hormônios Juvenis/metabolismo , Muda/genética , Diferenciação Sexual
2.
Dev Genes Evol ; 233(2): 77-89, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37332038

RESUMO

Thermal plasticity of melanin pigmentation patterns in Drosophila species has been studied as a model to investigate developmental mechanisms of phenotypic plasticity. The developmental process of melanin pigmentation patterns on wings of Drosophila is divided into two parts, prepattern specification during the pupal period and wing vein-dependent transportation of melanin precursors after eclosion. Which part can be affected by thermal changes? To address this question, we used polka-dotted melanin spots on wings of Drosophila guttifera, whose spot areas are specified by wingless morphogen. In this research, we reared D. guttifera at different temperatures to test whether wing spots show thermal plasticity. We found that wing size becomes larger at lower temperature and that different spots have different reaction norms. Furthermore, we changed the rearing temperature in the middle of the pupal period and found that the most sensitive developmental periods for wing size and spot size are different. The results suggest that the size control mechanisms for the thermal plasticity of wing size and spot size are independent. We also found that the most sensitive stage for spot size was part of the pupal period including stages at which wingless is expressed in the polka-dotted pattern. Therefore, it is suggested that temperature change might affect the prepattern specification process and might not affect transportation through wing veins.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Melaninas , Asas de Animais , Temperatura , Pupa
3.
Proc Natl Acad Sci U S A ; 117(21): 11589-11596, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393634

RESUMO

Organisms have evolved endless morphological, physiological, and behavioral novel traits during the course of evolution. Novel traits were proposed to evolve mainly by orchestration of preexisting genes. Over the past two decades, biologists have shown that cooption of gene regulatory networks (GRNs) indeed underlies numerous evolutionary novelties. However, very little is known about the actual GRN properties that allow such redeployment. Here we have investigated the generation and evolution of the complex wing pattern of the fly Samoaia leonensis We show that the transcription factor Engrailed is recruited independently from the other players of the anterior-posterior specification network to generate a new wing pattern. We argue that partial cooption is made possible because 1) the anterior-posterior specification GRN is flexible over time in the developing wing and 2) this flexibility results from the fact that every single gene of the GRN possesses its own functional time window. We propose that the temporal flexibility of a GRN is a general prerequisite for its possible cooption during the course of evolution.


Assuntos
Drosophilidae , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Pigmentação/genética , Asas de Animais , Animais , Padronização Corporal/genética , Drosophilidae/genética , Drosophilidae/crescimento & desenvolvimento , Proteínas de Insetos/genética , Fatores de Transcrição/genética , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/fisiologia
4.
Development ; 146(5)2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833380

RESUMO

In social insects, interactions among colony members trigger caste differentiation with morphological modifications. In termite soldier differentiation, the mandible size considerably increases through two moltings (via the presoldier stage) under the control of juvenile hormone (JH). Regulatory genes are predicted to provide patterning information that induces the mandible-specific cell proliferation. To identify factors responsible for the mandibular enlargement, expression analyses of 18 candidate genes were carried out in the termite Hodotermopsis sjostedti Among those, dachshund (dac), which identifies the intermediate domain along the proximodistal appendage axis, showed mandible-specific upregulation prior to the molt into presoldiers, which can explain the pattern of cell proliferation for the mandibular elongation. Knockdown of dac by RNAi reduced the mandibular length and distorted its morphology. Furthermore, the epistatic relationships among Methoprene tolerant, Insulin receptor, Deformed (Dfd) and dac were revealed by combined RNAi and qRT-PCR analyses, suggesting that dac is regulated by Dfd, downstream of the JH and insulin signaling pathways. Thus, caste-specific morphogenesis is controlled by interactions between the factors that provide spatial information and physiological status.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Isópteros/embriologia , Hormônios Juvenis/metabolismo , Mandíbula/embriologia , Proteínas Nucleares/metabolismo , Animais , Comportamento Animal , Padronização Corporal , Epistasia Genética , Perfilação da Expressão Gênica , Genes Homeobox , Insulina/metabolismo , Isópteros/genética , Muda , Morfogênese , Interferência de RNA , Transdução de Sinais
5.
Dev Genes Evol ; 231(3-4): 85-93, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33774724

RESUMO

A polka-dotted fruit fly, Drosophila guttifera, has a unique pigmentation pattern on its wings and is used as a model for evo-devo studies exploring the mechanism of evolutionary gain of novel traits. In this species, a morphogen-encoding gene, wingless, is expressed in species-specific positions and induces a unique pigmentation pattern. To produce some of the pigmentation spots on wing veins, wingless is thought to be expressed in developing campaniform sensillum cells, but it was unknown which of the four cell types there express(es) wingless. Here we show that two of the cell types, dome cells and socket cells, express wingless, as indicated by in situ hybridization together with immunohistochemistry. This is a unique case in which non-neuronal SOP (sensory organ precursor) progeny cells produce Wingless as an inducer of pigmentation pattern formation. Our finding opens a path to clarifying the mechanism of evolutionary gain of a unique wingless expression pattern by analyzing gene regulation in dome cells and socket cells.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Pigmentação/genética , Proteína Wnt1/genética , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Sensilas/citologia , Sensilas/metabolismo , Asas de Animais/metabolismo , Proteína Wnt1/metabolismo
6.
Dev Growth Differ ; 62(5): 269-278, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32171022

RESUMO

Fruit flies (Drosophila and its close relatives, or "drosophilids") are a group that includes an important model organism, Drosophila melanogaster, and also very diverse species distributed worldwide. Many of these species have black or brown pigmentation patterns on their wings, and have been used as material for evo-devo research. Pigmentation patterns are thought to have evolved rapidly compared with body plans or body shapes; hence they are advantageous model systems for studying evolutionary gains of traits and parallel evolution. Various groups of drosophilids, including genus Idiomyia (Hawaiian Drosophila), have a variety of pigmentations, ranging from simple black pigmentations around crossveins to a single antero-distal spot and a more complex mottled pattern. Pigmentation patterns are sometimes obviously used for sexual displays; however, in some cases they may have other functions. The process of wing formation in Drosophila, the general mechanism of pigmentation formation, and the transport of substances necessary for pigmentation, including melanin precursors, through wing veins are summarized here. Lastly, the evolution of the expression of genes regulating pigmentation patterns, the role of cis-regulatory regions, and the conditions required for the evolutionary emergence of pigmentation patterns are discussed. Future prospects for research on the evolution of wing pigmentation pattern formation in drosophilids are presented, particularly from the point of view of how they compare with other studies of the evolution of new traits.


Assuntos
Evolução Biológica , Drosophila melanogaster/metabolismo , Pigmentação , Asas de Animais/metabolismo , Animais , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Pigmentação/genética
7.
Zoolog Sci ; 36(5): 372-379, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33319960

RESUMO

Some polychaete species in the family Syllidae exhibit distinctive life cycles, in which a posterior part of the body of an individual detaches as a reproductive individual called a "stolon". This type of reproductive mode is known as stolonization or schizogamy. Although a number of observations have been reported, and techniques using molecular markers have recently been applied to characterize this phenomenon, little is known about the developmental and physiological mechanisms underlying stolonization. In the present study, Megasyllis nipponica, a common syllid species distributed throughout Japan, is proposed as a model to reveal the developmental and physiological mechanism of stolonization, and the rearing system to maintain it in laboratory conditions is described. This species was repeatedly sampled around Hokkaido, where more dense populations were found from August to October. The animals were maintained in the laboratory under stable long-day condition (20°C, 16L:8D), and fed mainly with spinach powder. Stolonization processes, spawning, embryonic and postembryonic development were observed and documented, and the required period of time for each developmental stage was recorded. The complete generation time was around two months under the rearing condition. The information provided is valuable to maintain this and other syllid species in the laboratory, and hence contributes to the establishment of new evolutionary and developmental research lines in this group of annelids.


Assuntos
Criação de Animais Domésticos/métodos , Poliquetos/crescimento & desenvolvimento , Poliquetos/fisiologia , Animais , Dieta , Feminino , Japão , Estágios do Ciclo de Vida , Masculino , Regeneração/fisiologia , Reprodução/fisiologia
8.
Proc Natl Acad Sci U S A ; 112(24): 7524-9, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26034272

RESUMO

Changes in gene expression during animal development are largely responsible for the evolution of morphological diversity. However, the genetic and molecular mechanisms responsible for the origins of new gene-expression domains have been difficult to elucidate. Here, we sought to identify molecular events underlying the origins of three novel features of wingless (wg) gene expression that are associated with distinct pigmentation patterns in Drosophila guttifera. We compared the activity of cis-regulatory sequences (enhancers) across the wg locus in D. guttifera and Drosophila melanogaster and found strong functional conservation among the enhancers that control similar patterns of wg expression in larval imaginal discs that are essential for appendage development. For pupal tissues, however, we found three novel wg enhancer activities in D. guttifera associated with novel domains of wg expression, including two enhancers located surprisingly far away in an intron of the distant Wnt10 gene. Detailed analysis of one enhancer (the vein-tip enhancer) revealed that it overlapped with a region controlling wg expression in wing crossveins (crossvein enhancer) in D. guttifera and other species. Our results indicate that one novel domain of wg expression in D. guttifera wings evolved by co-opting pre-existing regulatory sequences governing gene activity in the developing wing. We suggest that the modification of existing enhancers is a common path to the evolution of new gene-expression domains and enhancers.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila/genética , Proteína Wnt1/genética , Animais , Animais Geneticamente Modificados , Drosophila/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Teste de Complementação Genética , Dados de Sequência Molecular , Especificidade da Espécie , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas Wnt/genética
9.
Dev Genes Evol ; 227(3): 171-180, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28280924

RESUMO

Various organisms have color patterns on their body surfaces, and these color patterns are thought to contribute to physiological regulation, communication with conspecifics, and signaling with the environment. An adult fly of Drosophila guttifera (Insecta: Diptera: Drosophilidae) has melanin pigmentation patterns on its body and wings. Though D. guttifera has been used for research into color pattern formation, how its pupal development proceeds and when the pigmentation starts have not been well studied. In this study, we defined the pupal stages of D. guttifera and measured the pigment content of wing spots from the pupal period to the period after eclosion. Using a transgenic line which carries eGFP connected with an enhancer of yellow, a gene necessary for melanin synthesis, we analyzed the timing at which the yellow enhancer starts to drive eGFP. We also analyzed the distribution of Yellow-producing cells, as indicated by the expression of eGFP during pupal and young adult periods. The results suggested that Yellow-producing cells were removed from wings within 3 h after eclosion, and wing pigmentation continued without epithelial cells. Furthermore, the results of vein cutting experiments showed that the transport of melanin precursors through veins was necessary for wing pigmentation. These results showed the importance of melanin precursors transported through veins and of extracellular factors which were secreted from epithelial cells and left in the cuticle.


Assuntos
Drosophila/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Drosophila/classificação , Drosophila/crescimento & desenvolvimento , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/crescimento & desenvolvimento , Pigmentação , Pupa/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento
10.
Nature ; 464(7292): 1143-8, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20376004

RESUMO

The complex, geometric colour patterns of many animal bodies have important roles in behaviour and ecology. The generation of certain patterns has been the subject of considerable theoretical exploration, however, very little is known about the actual mechanisms underlying colour pattern formation or evolution. Here we have investigated the generation and evolution of the complex, spotted wing pattern of Drosophila guttifera. We show that wing spots are induced by the Wingless morphogen, which is expressed at many discrete sites that are specified by pre-existing positional information that governs the development of wing structures. Furthermore, we demonstrate that the elaborate spot pattern evolved from simpler schemes by co-option of Wingless expression at new sites. This example of a complex design developing and evolving by the layering of new patterns on pre-patterns is likely to be a general theme in other animals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Pigmentação/fisiologia , Asas de Animais/fisiologia , Proteína Wnt1/metabolismo , Animais , Cor , Drosophila/genética , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Dados de Sequência Molecular , Morfogênese/genética , Morfogênese/fisiologia , Pigmentação/genética , Asas de Animais/anatomia & histologia , Proteína Wnt1/genética
12.
Naturwissenschaften ; 102(11-12): 71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26573631

RESUMO

In termites, the soldier caste possesses morphological features suitable for colony defence, despite some exceptions. Soldiers are differentiated via two moultings through a presoldier stage with dramatic morphogenesis. While a number of morphological modifications are known to occur during the presoldier moult, growth and morphogenesis seem to continue even after the moult. The present study, using the damp-wood termite Hodotermopsis sjostedti, carried out morphological and histological investigations on the developmental processes during the presoldier stage that is artificially induced by the application of a juvenile hormone analogue. Measurements of five body parameters indicated that head length significantly increased during the 14-day period after the presoldier moult, while it did not increase subsequently to the stationary moult (pseudergate moult as control). Histological observations also showed that the cuticular development played a role in the presoldier head elongation, suggesting that the soft and flexible presoldier cuticle contributed to the soldier morphogenesis in termites.


Assuntos
Isópteros/crescimento & desenvolvimento , Morfogênese/fisiologia , Animais , Cabeça/anatomia & histologia , Isópteros/anatomia & histologia , Muda
13.
J Exp Zool B Mol Dev Evol ; 320(5): 295-306, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23703784

RESUMO

Eusocial insects exhibit various morphological castes associated with the division of labor within a colony. Termite soldiers possess defensive traits including mandibles that are greatly exaggerated and enlarged, as compared to termite reproductives and workers. The enlarged mandibles of soldiers are known to result from dynamic morphogenesis during soldier differentiation that can be induced by juvenile hormone and its analogs. However, the detailed developmental mechanisms still remain unresolved. Because the insulin/insulin-like growth factor signaling (IIS) pathway has been shown to regulate the relative sizes of organs (i.e., allometry) in other insects, we examined the expression profiles of major IIS factors in the damp-wood termite Hodotermopsis sjostedti, during soldier differentiation. The relative expression patterns of orthologs for termite InR (HsjInR), PKB/Akt (HsjPKB/Akt), and FOXO (HsjFOXO) suggest that HsjInR and HsjPKB/Akt were up-regulated in the period of elongation of mandibles during soldier development. In situ hybridization showed that HsjInR was strongly expressed in the mandibular epithelial tissues, and RNA interference (RNAi) for HsjInR disrupted soldier-specific morphogenesis including mandibular elongation. These results suggest that signaling through the IIS pathway is required for soldier-specific morphogenesis. In addition, up-regulation of the IIS pathway in other body tissues occurred at earlier stages of development, indicating that there is tissue-specific IIS regulation. Because the IIS pathway is generally thought to act upstream of JH in insects, our results suggest the damp-wood termite may have evolved a novel feedback loop between JH and IIS that enables social interactions, rather than nutrition, to regulate caste determination.


Assuntos
Insulina/metabolismo , Isópteros/crescimento & desenvolvimento , Morfogênese , Animais , Hibridização In Situ , Hormônios Juvenis/metabolismo , Transdução de Sinais , Madeira/química
14.
FEBS Lett ; 597(14): 1837-1847, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194970

RESUMO

The co-option of regulatory genes has the potential to play an important role in the evolutionary gain of new traits. However, the changes at the sequence level that underlie such a co-option event are still elusive. We identified the changes in the cis-regulatory sequence of wingless that caused co-option of wingless and led to its expression in new places in Drosophila guttifera, which has unique pigmentation patterns on its wings. The newly gained function of gene expression activation was acquired evolutionarily via a combination of pre-existing sequences containing a putative binding site for SMAD transcription factors that exhibit an ancestral function in driving expression at crossveins, and a sequence that is specific to the lineage leading to D. guttifera.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Pigmentação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asas de Animais/metabolismo
15.
Zoological Lett ; 9(1): 9, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173794

RESUMO

To address how organisms adapt to a new environment, subterranean organisms whose ancestors colonized subterranean habitats from surface habitats have been studied. Photoreception abilities have been shown to have degenerated in organisms living in caves and calcrete aquifers. Meanwhile, the organisms living in a shallow subterranean environment, which are inferred to reflect an intermediate stage in an evolutionary pathway to colonization of a deeper subterranean environment, have not been studied well. In the present study, we examined the photoreception ability in a trechine beetle, Trechiama kuznetsovi, which inhabits the upper hypogean zone and has a vestigial compound eye. By de novo assembly of genome and transcript sequences, we were able to identify photoreceptor genes and phototransduction genes. Specifically, we focused on opsin genes, where one long wavelength opsin gene and one ultraviolet opsin gene were identified. The encoded amino acid sequences had neither a premature stop codon nor a frameshift mutation, and appeared to be subject to purifying selection. Subsequently, we examined the internal structure of the compound eye and nerve tissue in the adult head, and found potential photoreceptor cells in the compound eye and nerve bundle connected to the brain. The present findings suggest that T. kuznetsovi has retained the ability of photoreception. This species represents a transitional stage of vision, in which the compound eye regresses, but it may retain the ability of photoreception using the vestigial eye.

16.
Genes Genet Syst ; 97(3): 153-166, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36070927

RESUMO

Understanding the processes and consequences of the morphological diversity of organisms is one of the major goals of evolutionary biology. Studies on the evolution of developmental mechanisms of morphologies, or evo-devo, have been extensively conducted in many taxa and have revealed many interesting phenomena at the molecular level. However, many other taxa exhibiting intriguing morphological diversity remain unexplored in the field of evo-devo. Although the annelid family Syllidae shows spectacular diversity in morphological development associated with reproduction, its evo-devo study, especially on molecular development, has progressed slowly. In this study, we focused on Megasyllis nipponica as a new model species for evo-devo in syllids and performed transcriptome sequencing to develop a massive genetic resource, which will be useful for future molecular studies. From the transcriptome data, we identified candidate genes that are likely involved in morphogenesis, including genes involved in hormone regulation, sex determination and appendage development. Furthermore, a computational analysis of the transcriptome sequence data indicated the occurrence of DNA methylation in coding regions of the M. nipponica genome. In addition, flow cytometry analysis showed that the genome size of M. nipponica was approximately 524 megabases. These results facilitate the study of morphogenesis in molecular terms and contribute to our understanding of the morphological diversity in syllids.


Assuntos
Anelídeos , Biologia do Desenvolvimento , Animais , Transcriptoma , Anelídeos/genética , Genoma , Hormônios , Evolução Biológica
17.
FEBS J ; 288(1): 99-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32307851

RESUMO

How evolutionary novelties have arisen is one of the central questions in evolutionary biology. Preexisting gene regulatory networks or signaling pathways have been shown to be co-opted for building novel traits in several organisms. However, the structure of entire gene regulatory networks and evolutionary events of gene co-option for emergence of a novel trait are poorly understood. In this study, to explore the genetic and molecular bases of the novel wing pigmentation pattern of a polka-dotted fruit fly (Drosophila guttifera), we performed de novo genome sequencing and transcriptome analyses. As a result, we comprehensively identified the genes associated with the pigmentation pattern. Furthermore, we revealed that 151 of these associated genes were positively or negatively regulated by wingless, a master regulator of wing pigmentation. Genes for neural development, Wnt signaling, Dpp signaling, and effectors (such as enzymes) for melanin pigmentation were included among these 151 genes. None of the known regulatory genes that regulate pigmentation pattern formation in other fruit fly species were included. Our results suggest that the novel pigmentation pattern of a polka-dotted fruit fly might have emerged through multistep co-options of multiple gene regulatory networks, signaling pathways, and effector genes, rather than recruitment of one large gene circuit.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Neurogênese/genética , Pigmentação/genética , Transcriptoma , Asas de Animais/metabolismo , Proteína Wnt1/genética , Animais , Evolução Biológica , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Melaninas/genética , Melaninas/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Fenótipo , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt1/metabolismo
18.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343293

RESUMO

The vinegar fly Drosophila melanogaster is a pivotal model for invertebrate development, genetics, physiology, neuroscience, and disease. The whole family Drosophilidae, which contains over 4,400 species, offers a plethora of cases for comparative and evolutionary studies. Despite a long history of phylogenetic inference, many relationships remain unresolved among the genera, subgenera, and species groups in the Drosophilidae. To clarify these relationships, we first developed a set of new genomic markers and assembled a multilocus data set of 17 genes from 704 species of Drosophilidae. We then inferred a species tree with highly supported groups for this family. Additionally, we were able to determine the phylogenetic position of some previously unplaced species. These results establish a new framework for investigating the evolution of traits in fruit flies, as well as valuable resources for systematics.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/genética , Drosophila melanogaster/genética , Filogenia
19.
BMC Dev Biol ; 10: 63, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20529303

RESUMO

BACKGROUND: Caste differentiation in social insects is a type of polyphenism that enables division of labor among members of a colony. This elaborate social integration has attracted broad interest, although little is known about its regulatory mechanisms, especially in Isoptera (termites). In this study, we analyzed soldier differentiation in the damp-wood termite Hodotermopsis sjostedti, focusing on a possible effector gene for caste development. The gene for an actin-binding protein, HsjCib, which shows a high level of expression in developing mandibles during soldier differentiation, is characterized in detail. RESULTS: To examine the HsjCib gene, full-length cDNAs were obtained by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) and sequencing. Multiple isoforms were identified, and on the basis of the results of northern and Southern hybridization analyses, these isoforms were considered to be transcriptional variants from a single gene. On the basis of their sequence similarity to homologous genes of other organisms, functions in actin assembly were assumed to be different among isoforms. Expression analysis revealed high expression in the head during soldier differentiation, which was consistent with their allometric growth. Although isoform expression was observed in various tissues, different expression levels were observed among tissues, suggesting the possibility of tissue-specific morphogenetic regulation by HsjCib isoforms. CONCLUSION: This study revealed the characteristics and dynamics of the HsjCib gene during soldier differentiation as a potential representative of downstream effector genes in caste-specific morphogenesis. From the expression patterns observed, this gene is considered to be involved in cephalic morphogenesis and neural reorganization, resulting in the establishment of caste-specific morphology and behavior.


Assuntos
Proteínas de Insetos/metabolismo , Isópteros/crescimento & desenvolvimento , Isópteros/metabolismo , Timosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Insetos/química , Isópteros/genética , Dados de Sequência Molecular , Morfogênese , Timosina/química
20.
BMC Dev Biol ; 10: 45, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20433737

RESUMO

BACKGROUND: Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera). RESULTS: Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. CONCLUSIONS: It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.


Assuntos
Daphnia/genética , Regulação da Expressão Gênica , Feromônios/metabolismo , Regulação para Cima , Animais , Daphnia/crescimento & desenvolvimento , Daphnia/metabolismo , Perfilação da Expressão Gênica , Larva/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA