Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Comput Chem ; 32(5): 835-53, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20949518

RESUMO

Butane- and propane-like silicon-germanium hydrides and chlorinated derivatives represent a new class of precursors for the fabrication of novel metastable materials at low-temperature regimes compatible with selective growth and commensurate with the emerging demand for the reduced thermal budgets of complementary metal oxide semiconductor integration. However, predictive simulation studies of the growth process and reaction mechanisms of these new compounds, needed to accelerate their deployment and fine-tune the unprecedented low-temperature and low-pressure synthesis protocols, require experimental thermodynamic data, which are currently unavailable. Furthermore, traditional quantum chemistry approaches lack the accuracy needed to treat large molecules containing third-row elements such as Ge. Accordingly, here we develop a method to accurately predict the formation enthalpy of these compounds using atom-wise corrections for Si, Ge, Cl, and H. For a test set of 15 well-known hydrides of Si and Ge and their chlorides, such as Si(3)H(8), Ge(2)H(6), SiGeH(6), SiHCl(3), and GeCl(4), our approach reduces the deviations between the experimental and predicted formation enthalpies obtained from complete basis set (CBS-QB3), G2, and B3LPY thermochemistry to levels of 1-3 kcal/mol, or a factor of ∼5 over the corresponding uncorrected values. We show that our approach yields results comparable or better than those obtained using homodesmic reactions while circumventing the need for thermochemical data of the associated reaction species. Optimized atom-wise corrections are then used to generate accurate enthalpies of formation for 39 pure Si-Ge hydrides and a selected group of 20 chlorinated analogs, of which some have recently been synthesized for the first time. Our corrected enthalpies perfectly reproduce the experimental stability trends of heavy butane-like compounds containing Ge. This is in contrast to the direct application of the CBS-QB3 method, which yields erratic predictions. Our approach also provides quantitative bond-additivity rules for the chlorination of these heavier species. Finally, we discuss structure and bonding trends across the entire sequence of butane-, propane-, and ethane-like molecules with a special focus on the isomeric variations.


Assuntos
Butanos/química , Germânio/química , Propano/química , Teoria Quântica , Silício/química , Termodinâmica , Estrutura Molecular
2.
Inorg Chem ; 37(18): 4617-4620, 1998 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-11670610

RESUMO

Anhydrous In(CN)(3) and In(1)(-)(x)()Ga(x)()(CN)(3) phases with empty Prussian-blue-type structures have been prepared via low-temperature solution methods utilizing molecular templating agents. Quantitative X-ray powder diffraction was used to refine the In(CN)(3) cubic structure in which In is octahedrally surrounded by an average of three C and three N atoms. The symmetry is Pm&thremacr;m, a = 5.627(1) Å, and the In-(C,N) and C-N bond lengths are 2.251(1) and 1.125(1) Å, respectively. The compound reversibly incorporates krypton atoms into the empty cavities to form In(CN)(3).Kr, which is readily identified by powder diffraction. Similar inclusion systems with n-hexane in the porous framework are also synthesized. In(1)(-)(x)()Ga(x)()(CN)(3) solid solutions are formed by suitable combinations of the binary systems and have lattice constants adjustable between 5.293 Å for Ga(CN)(3) and 5.627(1) Å for In(CN)(3). The variation of the lattice parameters with composition obeys Vegard's Law.

3.
Inorg Chem ; 37(26): 6638-6644, 1998 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11670795

RESUMO

We describe the formation and properties of H(2)GaN(3) (1), which is a very simple and stable molecular source for chemical vapor deposition (CVD) of GaN heterostructures. Compound 1 and the perdeuterated analogue D(2)GaN(3) (2) are prepared by the LiGaH(4) and LiGaD(4) reduction of Br(2)GaN(3) (3), respectively. Compound 3 is obtained from the thermal decomposition of the crystalline adduct SiMe(3)N(3).GaBr(3) (4) via loss of SiMe(3)Br. A single-crystal X-ray structure of 4 reveals that the molecule is essentially a Lewis acid-base complex between SiMe(3)N(3) and GaBr(3) and crystallizes in the orthorhombic space group Pna2(1), with a = 14.907(5) Å, b = 7.759(3) Å, c = 10.789(5) Å, V = 1248(1) Å,(3) and Z = 4. The new azidobromogallane HBrGaN(3) (5) is also prepared by reaction of appropriate amounts of 3 and LiGaH(4). Both H(2)GaN(3) (1) and D(2)GaN(3) (2) are volatile species at room temperature and can be readily distilled at 40 degrees C (0.20 Torr) without decomposition. Normal-mode analysis and ab initio theoretical calculations suggest that the vapor phase IR spectra of 1 and 2 are consistent with a trimeric (H(2)GaN(3))(3) and (D(2)GaN(3))(3) molecular structure of C(3)(v)() symmetry. On the basis of the mass spectrum, 1 is a trimer in the vapor phase and decomposes readily at low temperatures by elimination of only H(2) and N(2) to yield pure and highly stoichiometric GaN thin films. Crucial advantages of this new and potentially practical CVD method are the significant vapor pressure of the precursor that permits rapid mass transport at 22 degrees C and the facile decomposition pathway that allows film growth at temperatures as low as 200 degrees C with considerable growth rates up to 800 Å/min.

4.
Inorg Chem ; 36(9): 1792-1797, 1997 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11669782

RESUMO

The formation of a novel Lewis acid-base complex between the silyl azide Si(CH(3))(3)N(3) and GaCl(3) having the formula (H(3)C)(3)SiN(3).GaCl(3)()()(1) is demonstrated. The X-ray crystal structure of 1 shows that the electron-donating site is the nitrogen atom directly bonded to the organometallic group. Compound 1 crystallizes in the orthorhombic space group Pnma, with cell dimensions a = 15.823(10) Å, b = 10.010(5) Å, c = 7.403(3) Å, and Z = 4. Low-temperature decomposition of 1 via loss of (H(3)C)(3)SiCl yields Cl(2)GaN(3) (2), which serves as the first totally inorganic (C,H-free) precursor to heteroepitaxial GaN by ultrahigh-vacuum chemical vapor deposition. A volatile monomeric Lewis acid-base adduct of 2 with trimethylamine, Cl(2)GaN(3).N(CH(3))(3) (3), has also been prepared and utilized to grow high-quality GaN on Si and basal plane sapphire substrates. The valence bond model is used to analyze bond lengths in organometallic azides and related adducts.

5.
Dalton Trans ; 39(19): 4551-8, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20379588

RESUMO

The (SiH3)3P hydride is introduced as a practical source for n-doping of group IV semiconductors and as a highly-reactive delivery agent of -(SiH3)2P functionalities in exploratory synthesis. In contrast to earlier methods, the compound is produced here in high purity quantitative yields via a new single-step method based on reactions of SiH3Br and (Me3Sn)3P, circumventing the need for toxic and unstable starting materials. As an initial demonstration of its utility we synthesized monosubstituted Me2M-P(SiH3)2 (M = Al, Ga, In) derivatives of Me3M containing the (SiH3)2P ligand for the first time, in analogy to the known Me2M-P(SiMe3)2 counterparts. A dimeric structure of Me2M-P(SiH3)2 is proposed on the basis of spectroscopic characterizations and quantum chemical simulations. Next, in the context of materials synthesis, the (SiH3)3P compound was used to dope germanium for the first time by building a prototype p(++)Si(100)/i-Ge/n-Ge photodiode structure. The resultant n-type Ge layers contained active carrier concentrations of 3-4 × 10¹9 atoms cm⁻³ as determined by spectroscopic ellipsometry and confirmed by SIMS. Strain analysis using high resolution XRD yielded a Si content of 4 × 10²° atoms cm⁻³ in agreement with SIMS and within the range expected for incorporating Si3P type units into the diamond cubic Ge matrix. Extensive characterizations for structure, morphology and crystallinity indicate that the Si co-dopant plays essentially a passive role and does not compromise the device quality of the host material nor does it fundamentally alter its optical properties.

6.
Phys Rev Lett ; 102(10): 107403, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392159

RESUMO

A direct absorption edge tunable between 0.8 and approximately 1.4 eV is demonstrated in strain-free ternary Ge_{1-x-y}Si_{x}Sn_{y} alloys epitaxially grown on Ge-buffered Si. This decoupling of electronic structure and lattice parameter-unprecedented in group-IV alloys-opens up new possibilities in silicon photonics, particularly in the field of photovoltaics. The compositional dependence of the direct band gap in Ge_{1-x-y}Si_{x}Sn_{y} exhibits a nonmonotonic behavior that is explained in terms of coexisting small and giant bowing parameters in the two-dimensional compositional space.

7.
Phys Rev Lett ; 95(26): 266105, 2005 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-16486376

RESUMO

Gallium nitride films, epitaxially grown on Si(111) via a lattice-matched ZrB(2) buffer layer by plasma-assisted molecular beam epitaxy, have been studied in situ by noncontact atomic force microscopy and also in real time by reflection high-energy electron diffraction. The grown films were determined to be always N-polar. First-principles theoretical calculations modeling the interface structure between GaN(0001) and ZrB(2)(0001) clarify the origin of the N polarity.

8.
Inorg Chem ; 39(17): 3805-9, 2000 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-11196773

RESUMO

The synthesis of [(CH3)ClGaN3]4 (1) with a heterocyclic cyclooctane-like structure and [(CH3)BrGaN3]3 (2) with a trimeric structure has been demonstrated. X-ray structural determinations reveal that 1 and 2 consist of Ga4N4 eight-membered rings and Ga3N3 six-membered rings, respectively, in which the Ga atoms are bridged by the alpha nitrogens of the azide groups. [(CH3)ClGaN3]4 crystallizes in the tetragonal space group P42(1)c with a = 11.017(4) A, c = 8.699(7) A, and Z = 8. [(CH3)BrGaN3]3 crystallizes in the triclinic space group P1 with a = 8.1080(10) A, b = 9.9390(13) A, c = 10.4439(13) A, alpha = 86.069(3) degrees, beta = 86.771(3) degrees, gamma = 80.829(2) degrees, and Z = 6. The reaction of 1 and 2 with LiGaH4 yields [(CH3)HGaN3]x, which is a new low-temperature source of GaN.

9.
Phys Rev Lett ; 88(20): 206102, 2002 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-12005580

RESUMO

Two compounds SiC and AlN, normally insoluble in each other below approximately 2000 degrees C, are synthesized as a single-phase solid-solution thin film by molecular beam epitaxy at 750 degrees C. The growth of epitaxial SiCAlN films with hexagonal structure takes place on 6H-SiC(0001) substrates. Two structural models for the hexagonal SiCAlN films are constructed based on first-principles total-energy density functional theory calculations, each showing agreement with the experimental microstructures observed in cross-sectional transmission electron microscopy images. The predicted fundamental band gap is 3.2 eV for the stoichiometric SiCAlN film.

10.
J Am Chem Soc ; 123(44): 10980-7, 2001 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-11686702

RESUMO

Growth reactions based on a newly developed deuterium-stabilized Sn hydride [(Ph)SnD(3)] with Ge(2)H(6) produce a new family of Ge-Sn semiconductors with tunable band gaps and potential applications in high-speed, high-efficiency infrared optoelectronics. Metastable diamond-cubic films of Ge(1-x)Sn(x) alloys are created by chemical vapor deposition at 350 degrees C on Si(100). These exhibit unprecedented thermal stability and superior crystallinity despite the 17% lattice mismatch between the constituent materials. The composition, crystal structure, electronic structure, and optical properties of these materials are characterized by Rutherford backscattering, high-resolution electron microscopy, and X-ray diffraction, as well as Raman, IR, and spectroscopic ellipsometry. Electron diffraction reveals monocrystalline and perfectly epitaxial layers with lattice constants intermediate between those of Ge and alpha-Sn. X-ray diffraction in the theta-2theta mode shows well-defined peaks corresponding to random alloys, and in-plane rocking scans of the (004) reflection confirm a tightly aligned spread of the crystal mosaics. RBS ion-channeling including angular scans confirm that Sn occupies substitutional lattice sites and also provide evidence of local ordering of the elements with increasing Sn concentration. The Raman spectra show bands corresponding to Ge-Ge and Sn-Ge vibrations with frequencies consistent with random tetrahedral alloys. Resonance Raman and ellipsometry spectra indicate a band-gap reduction relative to Ge. The IR transmission spectra suggest that the band gap decreases monotonically with increasing Sn fraction. The synthesis, characterization, and gas-phase electron diffraction structure of (Ph)SnD(3) are also reported.

11.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA