RESUMO
During conversation, people take turns speaking by rapidly responding to their partners while simultaneously avoiding interruption1,2. Such interactions display a remarkable degree of coordination, as gaps between turns are typically about 200 milliseconds3-approximately the duration of an eyeblink4. These latencies are considerably shorter than those observed in simple word-production tasks, which indicates that speakers often plan their responses while listening to their partners2. Although a distributed network of brain regions has been implicated in speech planning5-9, the neural dynamics underlying the specific preparatory processes that enable rapid turn-taking are poorly understood. Here we use intracranial electrocorticography to precisely measure neural activity as participants perform interactive tasks, and we observe a functionally and anatomically distinct class of planning-related cortical dynamics. We localize these responses to a frontotemporal circuit centred on the language-critical caudal inferior frontal cortex10 (Broca's region) and the caudal middle frontal gyrus-a region not normally implicated in speech planning11-13. Using a series of motor tasks, we then show that this planning network is more active when preparing speech as opposed to non-linguistic actions. Finally, we delineate planning-related circuitry during natural conversation that is nearly identical to the network mapped with our interactive tasks, and we find this circuit to be most active before participant speech during unconstrained turn-taking. Therefore, we have identified a speech planning network that is central to natural language generation during social interaction.
Assuntos
Comportamento Social , Fala/fisiologia , Adulto , Idoso , Área de Broca/fisiologia , Eletrocorticografia , Função Executiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais , Fatores de TempoRESUMO
Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.
Assuntos
Córtex Auditivo , Humanos , Percepção Auditiva , Encéfalo , Eletrocorticografia , EletrofisiologiaRESUMO
Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.
Assuntos
Anestesia , Propofol , Humanos , Estado de Consciência , Propofol/farmacologia , Inconsciência/induzido quimicamente , Encéfalo , Sono , EletroencefalografiaRESUMO
The dynamics of information flow within the auditory cortical hierarchy associated with speech processing and the emergence of hemispheric specialization remain incompletely understood. To study these questions with high spatiotemporal resolution, intracranial recordings in 29 human neurosurgical patients of both sexes were obtained while subjects performed a semantic classification task. Neural activity was recorded from posteromedial portion of Heschl's gyrus (HGPM) and anterolateral portion of Heschl's gyrus (HGAL), planum temporale (PT), planum polare, insula, and superior temporal gyrus (STG). Responses to monosyllabic words exhibited early gamma power increases and a later suppression of alpha power, envisioned to represent feedforward activity and decreased feedback signaling, respectively. Gamma activation and alpha suppression had distinct magnitude and latency profiles. HGPM and PT had the strongest gamma responses with shortest onset latencies, indicating that they are the earliest auditory cortical processing stages. The origin of attenuated top-down influences in auditory cortex, as indexed by alpha suppression, was in STG and HGAL. Gamma responses and alpha suppression were typically larger to nontarget words than tones. Alpha suppression was uniformly greater to target versus nontarget stimuli. Hemispheric bias for words versus tones and for target versus nontarget words, when present, was left lateralized. Better task performance was associated with increased gamma activity in the left PT and greater alpha suppression in HGPM and HGAL bilaterally. The prominence of alpha suppression during semantic classification and its accessibility for noninvasive electrophysiologic studies suggests that this measure is a promising index of auditory cortical speech processing.SIGNIFICANCE STATEMENT Understanding the dynamics of cortical speech processing requires the use of active tasks. This is the first comprehensive intracranial electroencephalography study to examine cortical activity within the superior temporal plane, lateral superior temporal gyrus, and the insula during a semantic classification task. Distinct gamma activation and alpha suppression profiles clarify the functional organization of feedforward and feedback processing within the auditory cortical hierarchy. Asymmetries in cortical speech processing emerge at early processing stages. Relationships between cortical activity and task performance are interpreted in the context of current models of speech processing. Results lay the groundwork for iEEG studies using connectivity measures of the bidirectional information flow within the auditory processing hierarchy.
Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fala , Percepção da Fala/fisiologiaRESUMO
Bush et al. (2022) highlight that brain recordings examining speech production can be significantly affected by microphonic artifact, which would change the interpretation of these kinds of data. While these findings are vital in determining whether data are artifactual or physiological in origin, frequencies were only examined up to 250 Hz (i.e., local field potentials), which would imply that spike-related data (single or multi-neuron recordings) are unaffected. We highlight here that this type of contamination may also be present in unit recordings, with the same aim to understand genuine neural mechanisms rather than mis-interpreting artifactual data.
Assuntos
Artefatos , Fala , Humanos , Neurônios/fisiologia , Encéfalo , CabeçaRESUMO
The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.
Assuntos
Estimulação Acústica/métodos , Eletroencefalografia/métodos , Desempenho Psicomotor/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Adulto JovemRESUMO
Emotional events are often remembered better than neutral events, a benefit that many studies have hypothesized to depend on the amygdala's interactions with memory systems. These studies have indicated that the amygdala can modulate memory-consolidation processes in other brain regions such as the hippocampus and perirhinal cortex. Indeed, rodent studies have demonstrated that direct activation of the amygdala can enhance memory consolidation even during nonemotional events. However, the premise that the amygdala causally enhances declarative memory has not been directly tested in humans. Here we tested whether brief electrical stimulation to the amygdala could enhance declarative memory for specific images of neutral objects without eliciting a subjective emotional response. Fourteen epilepsy patients undergoing monitoring of seizures via intracranial depth electrodes viewed a series of neutral object images, half of which were immediately followed by brief, low-amplitude electrical stimulation to the amygdala. Amygdala stimulation elicited no subjective emotional response but led to reliably improved memory compared with control images when patients were given a recognition-memory test the next day. Neuronal oscillations in the amygdala, hippocampus, and perirhinal cortex during this next-day memory test indicated that a neural correlate of the memory enhancement was increased theta and gamma oscillatory interactions between these regions, consistent with the idea that the amygdala prioritizes consolidation by engaging other memory regions. These results show that the amygdala can initiate endogenous memory prioritization processes in the absence of emotional input, addressing a fundamental question and opening a path to future therapies.
Assuntos
Tonsila do Cerebelo/fisiologia , Estimulação Encefálica Profunda , Memória/fisiologia , Adulto , Emoções/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Masculino , Córtex Perirrinal/fisiologiaRESUMO
The functional organization of human auditory cortex can be probed by characterizing responses to various classes of sound at different anatomical locations. Along with histological studies this approach has revealed a primary field in posteromedial Heschl's gyrus (HG) with pronounced induced high-frequency (70-150 Hz) activity and short-latency responses that phase-lock to rapid transient sounds. Low-frequency neural oscillations are also relevant to stimulus processing and information flow, however, their distribution within auditory cortex has not been established. Alpha activity (7-14 Hz) in particular has been associated with processes that may differentially engage earlier versus later levels of the cortical hierarchy, including functional inhibition and the communication of sensory predictions. These theories derive largely from the study of occipitoparietal sources readily detectable in scalp electroencephalography. To characterize the anatomical basis and functional significance of less accessible temporal-lobe alpha activity we analyzed responses to sentences in seven human adults (4 female) with epilepsy who had been implanted with electrodes in superior temporal cortex. In contrast to primary cortex in posteromedial HG, a non-primary field in anterolateral HG was characterized by high spontaneous alpha activity that was strongly suppressed during auditory stimulation. Alpha-power suppression decreased with distance from anterolateral HG throughout superior temporal cortex, and was more pronounced for clear compared to degraded speech. This suppression could not be accounted for solely by a change in the slope of the power spectrum. The differential manifestation and stimulus-sensitivity of alpha oscillations across auditory fields should be accounted for in theories of their generation and function.SIGNIFICANCE STATEMENT To understand how auditory cortex is organized in support of perception, we recorded from patients implanted with electrodes for clinical reasons. This allowed measurement of activity in brain regions at different levels of sensory processing. Oscillations in the alpha range (7-14 Hz) have been associated with functions including sensory prediction and inhibition of regions handling irrelevant information, but their distribution within auditory cortex is not known. A key finding was that these oscillations dominated in one particular non-primary field, anterolateral Heschl's gyrus, and were suppressed when subjects listened to sentences. These results build on our knowledge of the functional organization of auditory cortex and provide anatomical constraints on theories of the generation and function of alpha oscillations.
Assuntos
Ritmo alfa , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Adulto , Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Potenciais Evocados Auditivos , Feminino , Ritmo Gama , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Disruption of cortical connectivity likely contributes to loss of consciousness (LOC) during both sleep and general anesthesia, but the degree of overlap in the underlying mechanisms is unclear. Both sleep and anesthesia comprise states of varying levels of arousal and consciousness, including states of largely maintained conscious experience (sleep: N1, REM; anesthesia: sedated but responsive) as well as states of substantially reduced conscious experience (sleep: N2/N3; anesthesia: unresponsive). Here, we tested the hypotheses that (1) cortical connectivity will exhibit clear changes when transitioning into states of reduced consciousness, and (2) these changes will be similar for arousal states of comparable levels of consciousness during sleep and anesthesia. Using intracranial recordings from five adult neurosurgical patients, we compared resting state cortical functional connectivity (as measured by weighted phase lag index, wPLI) in the same subjects across arousal states during natural sleep [wake (WS), N1, N2, N3, REM] and propofol anesthesia [pre-drug wake (WA), sedated/responsive (S), and unresponsive (U)]. Analysis of alpha-band connectivity indicated a transition boundary distinguishing states of maintained and reduced conscious experience in both sleep and anesthesia. In wake states WS and WA, alpha-band wPLI within the temporal lobe was dominant. This pattern was largely unchanged in N1, REM, and S. Transitions into states of reduced consciousness N2, N3, and U were characterized by dramatic changes in connectivity, with dominant connections shifting to prefrontal cortex. Secondary analyses indicated similarities in reorganization of cortical connectivity in sleep and anesthesia. Shifts from temporal to frontal cortical connectivity may reflect impaired sensory processing in states of reduced consciousness. The data indicate that functional connectivity can serve as a biomarker of arousal state and suggest common mechanisms of LOC in sleep and anesthesia.
Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Eletrocorticografia , Rede Nervosa/fisiologia , Fases do Sono/fisiologia , Inconsciência/fisiopatologia , Adulto , Anestesia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Hipnóticos e Sedativos/farmacologia , Masculino , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Propofol/farmacologia , Inconsciência/induzido quimicamente , Inconsciência/diagnóstico por imagem , Adulto JovemRESUMO
Learning complex ordering relationships between sensory events in a sequence is fundamental for animal perception and human communication. While it is known that rhythmic sensory events can entrain brain oscillations at different frequencies, how learning and prior experience with sequencing relationships affect neocortical oscillations and neuronal responses is poorly understood. We used an implicit sequence learning paradigm (an "artificial grammar") in which humans and monkeys were exposed to sequences of nonsense words with regularities in the ordering relationships between the words. We then recorded neural responses directly from the auditory cortex in both species in response to novel legal sequences or ones violating specific ordering relationships. Neural oscillations in both monkeys and humans in response to the nonsense word sequences show strikingly similar hierarchically nested low-frequency phase and high-gamma amplitude coupling, establishing this form of oscillatory coupling-previously associated with speech processing in the human auditory cortex-as an evolutionarily conserved biological process. Moreover, learned ordering relationships modulate the observed form of neural oscillatory coupling in both species, with temporally distinct neural oscillatory effects that appear to coordinate neuronal responses in the monkeys. This study identifies the conserved auditory cortical neural signatures involved in monitoring learned sequencing operations, evident as modulations of transient coupling and neuronal responses to temporally structured sensory input.
Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Acoplamento Neurovascular , Percepção da Fala , Aprendizagem Verbal , Adulto , Animais , Audiometria de Resposta Evocada , Córtex Auditivo/diagnóstico por imagem , Vias Auditivas/diagnóstico por imagem , Evolução Biológica , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Humanos , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Condução Nervosa , Tempo de Reação , Especificidade da Espécie , Análise e Desempenho de TarefasRESUMO
This work sought correlates of pitch perception, defined by neural activity above the lower limit of pitch (LLP), in auditory cortical neural ensembles, and examined their topographical distribution. Local field potentials (LFPs) were recorded in eight patients undergoing invasive recordings for pharmaco-resistant epilepsy. Stimuli consisted of bursts of broadband noise followed by regular interval noise (RIN). RIN was presented at rates below and above the LLP to distinguish responses related to the regularity of the stimulus and the presence of pitch itself. LFPs were recorded from human cortical homologues of auditory core, belt, and parabelt regions using multicontact depth electrodes implanted in Heschl's gyrus (HG) and Planum Temporale (PT), and subdural grid electrodes implanted over lateral superior temporal gyrus (STG). Evoked responses corresponding to the temporal regularity of the stimulus were assessed using autocorrelation of the evoked responses, and occurred for stimuli below and above the LLP. Induced responses throughout the high gamma range (60-200â¯Hz) were present for pitch values above the LLP, with onset latencies of approximately 70â¯ms. Mapping of the induced responses onto a common brain space demonstrated variability in the topographical distribution of high gamma responses across subjects. Induced responses were present throughout the length of HG and on PT, which is consistent with previous functional neuroimaging studies. Moreover, in each subject, a region within lateral STG showed robust induced responses at pitch-evoking stimulus rates. This work suggests a distributed representation of pitch processing in neural ensembles in human homologues of core and non-core auditory cortex.
Assuntos
Córtex Auditivo/fisiologia , Percepção da Altura Sonora/fisiologia , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Most biological signals are non-Gaussian, reflecting their origins in highly nonlinear physiological systems. A versatile set of techniques for studying non-Gaussian signals relies on the spectral representations of higher moments, known as polyspectra, which describe forms of cross-frequency dependence that do not arise in time-invariant Gaussian signals. The most commonly used of these employ the bispectrum. Recently, other measures of cross-frequency dependence have drawn interest in EEG literature, in particular those which address phase-amplitude coupling (PAC). Here we demonstrate a close relationship between the bispectrum and popular measures of PAC, which we relate to smoothings of the signal bispectrum, making them fundamentally bispectral estimators. Viewed this way, however, conventional PAC measures exhibit some unfavorable qualities, including poor bias properties, lack of correct symmetry and artificial constraints on the spectral range and resolution of the estimate. Moreover, information obscured by smoothing in measures of PAC, but preserved in standard bispectral estimators, may be critical for distinguishing nested oscillations from transient signal features and other non-oscillatory causes of "spurious" PAC. We propose guidelines for gauging the nature and origin of cross-frequency coupling with bispectral statistics. Beyond clarifying the relationship between PAC and the bispectrum, the present work lays out a general framework for the interpretation of the bispectrum, which extends to other higher-order spectra. In particular, this framework holds promise for the detailed identification of signal features related to both nested oscillations and transient phenomena. We conclude with a discussion of some broader theoretical implications of this framework and highlight promising directions for future development.
Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Eletroencefalografia/métodos , Humanos , Dinâmica não Linear , Processamento de Sinais Assistido por ComputadorRESUMO
Investigations of the neural basis of consciousness have greatly benefited from protocols that involve the presentation of stimuli at perceptual threshold, enabling the assessment of the patterns of brain activity that correlate with conscious perception, independently of any changes in sensory input. However, the comparison between perceived and unperceived trials would be expected to reveal not only the core neural substrate of a particular conscious perception, but also aspects of brain activity that facilitate, hinder or tend to follow conscious perception. We take a step towards the resolution of these confounds by combining an analysis of neural responses observed during the presentation of faces partially masked by Continuous Flash Suppression, and those responses observed during the unmasked presentation of faces and other images in the same subjects. We employed multidimensional classifiers to decode physical properties of stimuli or perceptual states from spectrotemporal representations of electrocorticographic signals (1071 channels in 5 subjects). Neural activity in certain face responsive areas located in both the fusiform gyrus and in the lateral-temporal/inferior-parietal cortex discriminated seen vs. unseen faces in the masked paradigm and upright faces vs. other categories in the unmasked paradigm. However, only the former discriminated upright vs. inverted faces in the unmasked paradigm. Our results suggest a prominent role for the fusiform gyrus in the configural perception of faces, and possibly other objects that are holistically processed. More generally, we advocate comparative analysis of neural recordings obtained during different, but related, experimental protocols as a promising direction towards elucidating the functional specificities of the patterns of neural activation that accompany our conscious experiences.
Assuntos
Estado de Consciência/fisiologia , Reconhecimento Facial/fisiologia , Mascaramento Perceptivo/fisiologia , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Lobo Temporal/fisiologiaRESUMO
Naming people, places, and things is a fundamental human ability that is often impaired in patients with language-dominant anterior temporal lobe (ATL) dysfunction or ATL resection as part of epilepsy treatment. Convergent lines of evidence point to the importance of the ATL in name retrieval. The physiologic mechanisms that mediate name retrieval in the ATL, however, are not well understood. The purpose of this study was to characterize the electrophysiologic responses of the human ATL during overt cued naming of famous people and objects. Eight neurosurgical patients with suspected temporal lobe epilepsy who underwent implantation of intracranial electrodes for seizure focus localization were the subjects of this study. Specialized coverage of the ATL was achieved in each subject. The subjects named pictures of U.S. presidents and images of common hand-held tools. Event-related band power was measured for each ATL recording site. Both the left and right ATL demonstrated robust and focal increases in beta-band (14-30 Hz) power during person and tool naming. The onset of this response typically occurred at 400 ms but sometimes as early as 200 ms. Visual naming of famous people and tools is associated with robust and localized modulation of the beta band in both the left and right ATL. Measurement of visual naming responses may provide the groundwork for future mapping modalities to localize eloquent cortex in the ATL.
Assuntos
Ritmo beta/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Rememoração Mental/fisiologia , Nomes , Lobo Temporal/fisiopatologia , Adulto , Aprendizagem por Associação/fisiologia , Mapeamento Encefálico , Sinais (Psicologia) , Eletrodos Implantados , Eletroencefalografia , Epilepsia do Lobo Temporal/cirurgia , Análise de Fourier , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estimulação Luminosa , Adulto JovemRESUMO
The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.
Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Ritmo Gama/fisiologia , Adulto , Córtex Auditivo/anatomia & histologia , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Percepção da Fala/fisiologia , Adulto JovemRESUMO
Turn-taking is a central feature of conversation across languages and cultures.1,2,3,4 This key social behavior requires numerous sensorimotor and cognitive operations1,5,6 that can be organized into three general phases: comprehension of a partner's turn, preparation of a speaker's own turn, and execution of that turn. Using intracranial electrocorticography, we recently demonstrated that neural activity related to these phases is functionally distinct during turn-taking.7 In particular, networks active during the perceptual and articulatory stages of turn-taking consisted of structures known to be important for speech-related sensory and motor processing,8,9,10,11,12,13,14,15,16,17 while putative planning dynamics were most regularly observed in the caudal inferior frontal gyrus (cIFG) and the middle frontal gyrus (cMFG). To test if these structures are necessary for planning during spoken interaction, we used direct electrical stimulation (DES) to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task.7,18,19 We found that stimulating the cIFG and cMFG led to various response errors9,13,20,21 but not gross articulatory deficits, which instead resulted from DES of structures involved in motor control8,13,20,22 (e.g., the precentral gyrus). Furthermore, perturbation of the cIFG and cMFG delayed inter-speaker timing-consistent with slowed planning-while faster responses could result from stimulation of sites located in other areas. Taken together, our findings suggest that the cIFG and cMFG contain critical preparatory circuits that are relevant for interactive language use.
Assuntos
Fala , Humanos , Masculino , Adulto , Fala/fisiologia , Feminino , Estimulação Elétrica , Córtex Pré-Frontal/fisiologia , Lobo Frontal/fisiologia , Adulto Jovem , Eletrocorticografia , Pessoa de Meia-IdadeRESUMO
The value and uncertainty associated with choice alternatives constitute critical features relevant for decisions. However, the manner in which reward and risk representations are temporally organized in the brain remains elusive. Here we leverage the spatiotemporal precision of intracranial electroencephalography, along with a simple card game designed to elicit the unfolding computation of a set of reward and risk variables, to uncover this temporal organization. Reward outcome representations across wide-spread regions follow a sequential order along the anteroposterior axis of the brain. In contrast, expected value can be decoded from multiple regions at the same time, and error signals in both reward and risk domains reflect a mixture of sequential and parallel encoding. We further highlight the role of the anterior insula in generalizing between reward prediction error and risk prediction error codes. Together our results emphasize the importance of neural dynamics for understanding value-based decisions under uncertainty.
Assuntos
Encéfalo , Recompensa , Humanos , Encéfalo/diagnóstico por imagemRESUMO
The functions of prefrontal cortex remain enigmatic, especially for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task switching, and memory. A predominant current theory regarding the most anterior sector, the frontopolar cortex (FPC), is that it is involved in exploring alternative courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method, together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a four-armed bandit task known from neuroimaging studies to activate the FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments.
Assuntos
Tomada de Decisões/fisiologia , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Recompensa , Algoritmos , Análise de Variância , Dano Encefálico Crônico/patologia , Dano Encefálico Crônico/psicologia , Simulação por Computador , Comportamento Exploratório/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Testes Neuropsicológicos , Procedimentos Neurocirúrgicos , Córtex Pré-Frontal/lesões , Córtex Pré-Frontal/patologia , Caracteres SexuaisRESUMO
Evidence regarding the functional subdivisions of human auditory cortex has been slow to converge on a definite model. In part, this reflects inadequacies of current understanding of how the cortex represents temporal information in acoustic signals. To address this, we investigated spatiotemporal properties of auditory responses in human posterolateral superior temporal (PLST) gyrus to acoustic click-train stimuli using intracranial recordings from neurosurgical patients. Subjects were patients undergoing chronic invasive monitoring for refractory epilepsy. The subjects listened passively to acoustic click-train stimuli of varying durations (160 or 1,000 ms) and rates (4-200 Hz), delivered diotically via insert earphones. Multicontact subdural grids placed over the perisylvian cortex recorded intracranial electrocorticographic responses from PLST and surrounding areas. Analyses focused on averaged evoked potentials (AEPs) and high gamma (70-150 Hz) event-related band power (ERBP). Responses to click trains featured prominent AEP waveforms and increases in ERBP. The magnitude of AEPs and ERBP typically increased with click rate. Superimposed on the AEPs were frequency-following responses (FFRs), most prominent at 50-Hz click rates but still detectable at stimulus rates up to 200 Hz. Loci with the largest high gamma responses on PLST were often different from those sites that exhibited the strongest FFRs. The data indicate that responses of non-core auditory cortex of PLST represent temporal stimulus features in multiple ways. These include an isomorphic representation of periodicity (as measured by the FFR), a representation based on increases in non-phase-locked activity (as measured by high gamma ERBP), and spatially distributed patterns of activity.
Assuntos
Córtex Auditivo/fisiopatologia , Ondas Encefálicas , Epilepsia/fisiopatologia , Lobo Temporal/fisiopatologia , Estimulação Acústica , Adulto , Potenciais Evocados Auditivos , Feminino , Lateralidade Funcional , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Many brain areas exhibit activity correlated with language planning, but the impact of these dynamics on spoken interaction remains unclear. Here we use direct electrical stimulation to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task. Stimulating structures involved in speech motor function evoked diverse articulatory deficits, while perturbations of caudal inferior and middle frontal gyri - which exhibit preparatory activity during conversational turn-taking - led to response errors. Perturbation of the same planning-related frontal regions slowed inter-speaker timing, while faster responses could result from stimulation of sites located in other areas. Taken together, these findings further indicate that caudal inferior and middle frontal gyri constitute a critical planning network essential for interactive language use.