Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 52(1): 83-95.e4, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31882362

RESUMO

Lymphoid tissue inducer (LTi) cells are regarded as a subset of innate lymphoid cells (ILCs). However, these cells are not derived from the ILC common progenitor, which generates other ILC subsets and is defined by the expression of the transcription factor PLZF. Here, we examined transcription factor(s) determining the fate of LTi progenitors versus non-LTi ILC progenitors. Conditional deletion of Gata3 resulted in the loss of PLZF+ non-LTi progenitors but not the LTi progenitors that expressed the transcription factor RORγt. Consistently, PLZF+ non-LTi progenitors expressed high amounts of GATA3, whereas GATA3 expression was low in RORγt+ LTi progenitors. The generation of both progenitors required the transcriptional regulator Id2, which defines the common helper-like innate lymphoid progenitor (ChILP), but not cytokine signaling. Nevertheless, low GATA3 expression was necessary for the generation of functionally mature LTi cells. Thus, differential expression of GATA3 determines the fates and functions of distinct ILC progenitors.


Assuntos
Fator de Transcrição GATA3/biossíntese , Células-Tronco/citologia , Subpopulações de Linfócitos T/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linhagem da Célula/imunologia , Células Cultivadas , Fator de Transcrição GATA3/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Receptor de Morte Celular Programada 1/biossíntese , Proteína com Dedos de Zinco da Leucemia Promielocítica/biossíntese , Células-Tronco/imunologia , Subpopulações de Linfócitos T/imunologia
2.
Cell ; 159(1): 80-93, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25259922

RESUMO

The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Calcitriol/análogos & derivados , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Calcitriol/metabolismo , Adenocarcinoma/patologia , Animais , Calcitriol/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neoplasias Pancreáticas/patologia , Pancreatite/tratamento farmacológico , Pancreatite/prevenção & controle , Transdução de Sinais , Células Estromais/patologia
3.
Hum Mol Genet ; 32(2): 177-191, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35925868

RESUMO

Mutations in LMNA, the gene encoding A-type lamins, cause laminopathies-diseases of striated muscle and other tissues. The aetiology of laminopathies has been attributed to perturbation of chromatin organization or structural weakening of the nuclear envelope (NE) such that the nucleus becomes more prone to mechanical damage. The latter model requires a conduit for force transmission to the nucleus. NE-associated Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes are one such pathway. Using clustered regularly interspaced short palindromic repeats to disrupt the Nesprin-1 KASH (Klarsicht, ANC-1, Syne Homology) domain, we identified this LINC complex protein as the predominant NE anchor for microtubule cytoskeleton components, including nucleation activities and motor complexes, in mouse cardiomyocytes. Loss of Nesprin-1 LINC complexes resulted in loss of microtubule cytoskeleton proteins at the nucleus and changes in nuclear morphology and positioning in striated muscle cells, but with no overt physiological defects. Disrupting the KASH domain of Nesprin-1 suppresses Lmna-linked cardiac pathology, likely by reducing microtubule cytoskeleton activities at the nucleus. Nesprin-1 LINC complexes thus represent a potential therapeutic target for striated muscle laminopathies.


Assuntos
Laminopatias , Músculo Estriado , Animais , Camundongos , Proteínas dos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Membrana/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Matriz Nuclear/genética , Microtúbulos/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Músculo Estriado/metabolismo , Laminopatias/metabolismo
4.
Am J Hum Genet ; 109(8): 1436-1457, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35907405

RESUMO

ADGRL1 (latrophilin 1), a well-characterized adhesion G protein-coupled receptor, has been implicated in synaptic development, maturation, and activity. However, the role of ADGRL1 in human disease has been elusive. Here, we describe ten individuals with variable neurodevelopmental features including developmental delay, intellectual disability, attention deficit hyperactivity and autism spectrum disorders, and epilepsy, all heterozygous for variants in ADGRL1. In vitro, human ADGRL1 variants expressed in neuroblastoma cells showed faulty ligand-induced regulation of intracellular Ca2+ influx, consistent with haploinsufficiency. In vivo, Adgrl1 was knocked out in mice and studied on two genetic backgrounds. On a non-permissive background, mice carrying a heterozygous Adgrl1 null allele exhibited neurological and developmental abnormalities, while homozygous mice were non-viable. On a permissive background, knockout animals were also born at sub-Mendelian ratios, but many Adgrl1 null mice survived gestation and reached adulthood. Adgrl1-/- mice demonstrated stereotypic behaviors, sexual dysfunction, bimodal extremes of locomotion, augmented startle reflex, and attenuated pre-pulse inhibition, which responded to risperidone. Ex vivo synaptic preparations displayed increased spontaneous exocytosis of dopamine, acetylcholine, and glutamate, but Adgrl1-/- neurons formed synapses in vitro poorly. Overall, our findings demonstrate that ADGRL1 haploinsufficiency leads to consistent developmental, neurological, and behavioral abnormalities in mice and humans.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Adulto , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética
5.
Proc Natl Acad Sci U S A ; 110(44): 17933-8, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24114272

RESUMO

Glioblastoma (GBM), the most common brain malignancy, remains fatal with no effective treatment. Analyses of common aberrations in GBM suggest major regulatory pathways associated with disease etiology. However, 90% of GBMs are diagnosed at an advanced stage (primary GBMs), providing no access to early disease stages for assessing disease progression events. As such, both understanding of disease mechanisms and the development of biomarkers and therapeutics for effective disease management are limited. Here, we describe an adult-inducible astrocyte-specific system in genetically engineered mice that queries causation in disease evolution of regulatory networks perturbed in human GBM. Events yielding disease, both engineered and spontaneous, indicate ordered grade-specific perturbations that yield high-grade astrocytomas (anaplastic astrocytomas and GBMs). Impaired retinoblastoma protein RB tumor suppression yields grade II histopathology. Additional activation of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) network drives progression to grade III disease, and further inactivation of phosphatase and tensin homolog (PTEN) yields GBM. Spontaneous missense mutation of tumor suppressor Trp53 arises subsequent to KRAS activation, but before grade III progression. The stochastic appearance of mutations identical to those observed in humans, particularly the same spectrum of p53 amino acid changes, supports the validity of engineered lesions and the ensuing interpretations of etiology. Absence of isocitrate dehydrogenase 1 (IDH1) mutation, asymptomatic low grade disease, and rapid emergence of GBM combined with a mesenchymal transcriptome signature reflect characteristics of primary GBM and provide insight into causal relationships.


Assuntos
Astrocitoma/etiologia , Evolução Biológica , Modelos Animais de Doenças , Engenharia Genética/métodos , Glioblastoma/etiologia , Animais , Sequência de Bases , Progressão da Doença , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência de DNA , Proteína Supressora de Tumor p53/genética
6.
Differentiation ; 89(1-2): 11-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25578479

RESUMO

The nuclear lamina, comprised of the A and B-type lamins, is important in maintaining nuclear shape and in regulating key nuclear functions such as chromatin organization and transcription. Deletion of the A-type lamins results in genome instability and many cancers show altered levels of A-type lamin expression. Loss of function mutations in the mouse Lmna gene result in early postnatal lethality, usually within 3-5 weeks of birth making an analysis of the role of lamins in carcinogenesis difficult. To circumvent early lethality, and determine the role of the A-type lamins in specific tissues in older mice we derived a conditional allele of Lmna(FL/FL) (floxed). Lmna(FL/FL) was specifically deleted in the gastrointestinal (GI) epithelium by crossing the Lmna(FL/FL) mice with Villin-Cre mice. Mice lacking Lmna in the GI are overtly normal with no effects on overall growth, longevity or GI morphology. On a GI specific sensitized (Apc(Min/+)) background, polyp numbers are unchanged, but polyp size is slightly increased, and only in the duodenum. Our findings reveal that although A-type lamins are dispensable in the postnatal GI epithelium, loss of Lmna under malignant conditions may, to a limited extent, enhance polyp size indicating that A-type lamins may regulate cell proliferation in the transformed GI epithelium.


Assuntos
Transformação Celular Neoplásica/genética , Instabilidade Genômica , Pólipos Intestinais/genética , Lamina Tipo A/genética , Animais , Proliferação de Células/genética , Epitélio/crescimento & desenvolvimento , Epitélio/patologia , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/patologia , Pólipos Intestinais/patologia , Lamina Tipo A/metabolismo , Camundongos , Especificidade de Órgãos
7.
Dev Cell ; 59(2): 175-186.e8, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38159568

RESUMO

Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.


Assuntos
Proteínas Hedgehog , Células-Tronco Embrionárias Murinas , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Glândulas Mamárias Animais , Células Epiteliais , Diferenciação Celular , Organoides
8.
Sci Rep ; 13(1): 14907, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689790

RESUMO

All-trans-retinoic acid (ATRA), the retinoic acid receptors (RARs) agonist, regulates cell growth, differentiation, immunity, and survival. We report that ATRA-treatment repressed cancer growth in syngeneic immunocompetent, but not immunodeficient mice. The tumor microenvironment was implicated: CD8+ T cell depletion antagonized ATRA's anti-tumorigenic effects in syngeneic mice. ATRA-treatment with checkpoint blockade did not cooperatively inhibit murine lung cancer growth. To augment ATRA's anti-tumorigenicity without promoting its pro-tumorigenic potential, an RARγ agonist (IRX4647) was used since it regulates T cell biology. Treating with IRX4647 in combination with an immune checkpoint (anti-PD-L1) inhibitor resulted in a statistically significant suppression of syngeneic 344SQ lung cancers in mice-a model known for its resistance to checkpoints and characterized by low basal T cell and PD-L1 expression. This combined treatment notably elevated CD4+ T-cell presence within the tumor microenvironment and increased IL-5 and IL-13 tumor levels, while simultaneously decreasing CD38 in the tumor stroma. IL-5 and/or IL-13 treatments increased CD4+ more than CD8+ T-cells in mice. IRX4647-treatment did not appreciably affect in vitro lung cancer growth, despite RARγ expression. Pharmacokinetic analysis found IRX4647 plasma half-life was 6 h in mice. Yet, RARα antagonist (IRX6696)-treatment with anti-PD-L1 did not repress syngeneic lung cancer growth. Together, these findings provide a rationale for a clinical trial investigating an RARγ agonist to augment check point blockade response in cancers.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Animais , Camundongos , Interleucina-13 , Interleucina-5 , Microambiente Tumoral , Receptores do Ácido Retinoico , Neoplasias Pulmonares/tratamento farmacológico , Tretinoína , Carcinogênese
9.
J Cell Sci ; 123(Pt 22): 3944-55, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20980386

RESUMO

During the initial stage of neuromuscular junction (NMJ) formation, nerve-derived agrin cooperates with muscle-autonomous mechanisms in the organization and stabilization of a plaque-like postsynaptic specialization at the site of nerve-muscle contact. Subsequent NMJ maturation to the characteristic pretzel-like appearance requires extensive structural reorganization. We found that the progress of plaque-to-pretzel maturation is regulated by agrin. Excessive cleavage of agrin via transgenic overexpression of an agrin-cleaving protease, neurotrypsin, in motoneurons resulted in excessive reorganizational activity of the NMJs, leading to rapid dispersal of the synaptic specialization. By contrast, expression of cleavage-resistant agrin in motoneurons slowed down NMJ remodeling and delayed NMJ maturation. Neurotrypsin, which is the sole agrin-cleaving protease in the CNS, was excluded as the physiological agrin-cleaving protease at the NMJ, because NMJ maturation was normal in neurotrypsin-deficient mice. Together, our analyses characterize agrin cleavage at its proteolytic α- and ß-sites by an as-yet-unspecified protease as a regulatory access for relieving the agrin-dependent constraint on endplate reorganization during NMJ maturation.


Assuntos
Agrina/metabolismo , Junção Neuromuscular/metabolismo , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Fibras Nervosas/metabolismo , Serina Endopeptidases/biossíntese , Medula Espinal/citologia , Transmissão Sináptica/fisiologia
10.
Proc Natl Acad Sci U S A ; 106(7): 2194-9, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164528

RESUMO

Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin-Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1-3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4's kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.


Assuntos
Cinesinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas Nucleares/fisiologia , Sequência de Aminoácidos , Animais , Centrossomo/metabolismo , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos/química , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
11.
Mol Cancer Ther ; 20(10): 2082-2092, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315768

RESUMO

Antibody-based therapies designed for human use frequently fail to cross-react with the murine isoform of their target. Because of this problem, preclinical studies of antibody-based mesothelin (Msl)-targeted therapeutics in immunocompetent systems have been limited by the lack of suitable mouse models. Here, we describe two immunocompetent humanized mesothelin transgenic mouse lines that can act as tolerant hosts for C57Bl/6-syngeneic cell lines expressing the human isoform of mesothelin. Thyroid peroxidase (TPO) mice have thyroid-restricted human mesothelin expression. Mesothelin (Msl) mice express human mesothelin in the typical serosal membrane distribution and can additionally be utilized to assess on-target, off-tumor toxicity of human mesothelin-targeted therapeutics. Both transgenic strains shed human mesothelin into the serum like human mesothelioma and patients with ovarian cancer, and serum human mesothelin can be used as a blood-based surrogate of tumor burden. Using these models, we examined the on-target toxicity and antitumor activity of human mesothelin-targeted recombinant immunotoxins. We found that immunotoxin treatment causes acute and chronic histologic changes to serosal membranes in Msl mice, while human mesothelin-expressing thyroid follicular cells in TPO mice are resistant to immunotoxin despite excellent drug delivery. Furthermore, poor delivery of immunotoxin to syngeneic orthotopic human mesothelin-expressing pancreatic adenocarcinoma limits antitumor activity both alone and in combination with immune checkpoint inhibition. In summary, we have developed two high-fidelity, immunocompetent murine models for human cancer that allow for rigorous preclinical evaluation of human mesothelin-targeted therapeutics.


Assuntos
Adenocarcinoma/terapia , Mesotelina/administração & dosagem , Mesotelioma/terapia , Neoplasias Pancreáticas/terapia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose , Proliferação de Células , Feminino , Engenharia Genética , Humanos , Masculino , Mesotelina/genética , Mesotelina/metabolismo , Mesotelioma/genética , Mesotelioma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cancer Ther ; 20(10): 1926-1940, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376576

RESUMO

The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFß antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFß inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFß-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFß inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFß inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFß inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFß inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Células Estromais/imunologia , Microambiente Tumoral , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Terapia Combinada , Desoxicitidina/farmacologia , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
13.
Neuron ; 49(6): 823-32, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16543131

RESUMO

Myelin, the insulating layers of membrane wrapped around axons by oligodendrocytes, is essential for normal impulse conduction. It forms during late stages of fetal development but continues into early adult life. Myelination correlates with cognitive development and can be regulated by impulse activity through unknown molecular mechanisms. Astrocytes do not form myelin, but these nonneuronal cells can promote myelination in ways that are not understood. Here, we identify a link between myelination, astrocytes, and electrical impulse activity in axons that is mediated by the cytokine leukemia inhibitory factor (LIF). These findings show that LIF is released by astrocytes in response to ATP liberated from axons firing action potentials, and LIF promotes myelination by mature oligodendrocytes. This activity-dependent mechanism promoting myelination could regulate myelination according to functional activity or environmental experience and may offer new approaches to treating demyelinating diseases.


Assuntos
Astrócitos/efeitos da radiação , Comunicação Celular/fisiologia , Estimulação Elétrica/métodos , Proteínas da Mielina/metabolismo , Oligodendroglia/fisiologia , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Anestésicos Locais/farmacologia , Animais , Anticorpos/farmacologia , Astrócitos/fisiologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/efeitos da radiação , Compostos Azo , Western Blotting/métodos , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/efeitos da radiação , Contagem de Células/métodos , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura/métodos , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Drosophila/metabolismo , Interações Medicamentosas , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática/métodos , Gânglios Espinais/citologia , Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica/métodos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Fator Inibidor de Leucemia , Camundongos , Modelos Biológicos , Proteína Básica da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Naftalenos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Antígenos O/metabolismo , RNA Mensageiro/biossíntese , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Células-Tronco , Tetrodotoxina/farmacologia , Tionucleotídeos/farmacologia
14.
J Cell Biol ; 170(5): 781-91, 2005 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16115958

RESUMO

Emery-Dreifuss muscular dystrophy can be caused by mutations in the nuclear envelope proteins lamin A/C and emerin. We recently demonstrated that A-type lamin-deficient cells have impaired nuclear mechanics and altered mechanotransduction, suggesting two potential disease mechanisms (Lammerding, J., P.C. Schulze, T. Takahashi, S. Kozlov, T. Sullivan, R.D. Kamm, C.L. Stewart, and R.T. Lee. 2004. J. Clin. Invest. 113:370-378). Here, we examined the function of emerin on nuclear mechanics and strain-induced signaling. Emerin-deficient mouse embryo fibroblasts have abnormal nuclear shape, but in contrast to A-type lamin-deficient cells, exhibit nuclear deformations comparable to wild-type cells in cellular strain experiments, and the integrity of emerin-deficient nuclear envelopes appeared normal in a nuclear microinjection assay. Interestingly, expression of mechanosensitive genes in response to mechanical strain was impaired in emerin-deficient cells, and prolonged mechanical stimulation increased apoptosis in emerin-deficient cells. Thus, emerin-deficient mouse embryo fibroblasts have apparently normal nuclear mechanics but impaired expression of mechanosensitive genes in response to strain, suggesting that emerin mutations may act through altered transcriptional regulation and not by increasing nuclear fragility.


Assuntos
Núcleo Celular , Fibroblastos , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Timopoietinas/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares , Estresse Mecânico , Timopoietinas/genética
15.
Cancer Res ; 80(8): 1630-1643, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31911550

RESUMO

Pancreatic cancer is a disease with limited therapeutic options. Resistance to chemotherapies poses a significant clinical challenge for patients with pancreatic cancer and contributes to a high rate of recurrence. Oncogenic KRAS, a critical driver of pancreatic cancer, promotes metabolic reprogramming and upregulates NRF2, a master regulator of the antioxidant network. Here, we show that NRF2 contributed to chemoresistance and was associated with a poor prognosis in patients with pancreatic cancer. NRF2 activation metabolically rewired and elevated pathways involved in glutamine metabolism. This curbed chemoresistance in KRAS-mutant pancreatic cancers. In addition, manipulating glutamine metabolism restrained the assembly of stress granules, an indicator of chemoresistance. Glutaminase inhibitors sensitized chemoresistant pancreatic cancer cells to gemcitabine, thereby improving the effectiveness of chemotherapy. This therapeutic approach holds promise as a novel therapy for patients with pancreatic cancer harboring KRAS mutation. SIGNIFICANCE: These findings illuminate the mechanistic features of KRAS-mediated chemoresistance and provide a rationale for exploiting metabolic reprogramming in pancreatic cancer cells to confer therapeutic opportunities that could be translated into clinical trials. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/8/1630/F1.large.jpg.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Glutamina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Glutaminase/antagonistas & inibidores , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Prognóstico , Distribuição Aleatória , Análise Serial de Tecidos , Regulação para Cima , Gencitabina
16.
J Pharm Biomed Anal ; 181: 113093, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31931447

RESUMO

Synthetic host defense peptides (HDP) are a new class of promising therapeutic agents with potential application in a variety of diseases. RP-182 is a 10mer synthetic HDP design, which selectively reduces M2-like tumor associated macrophages via engagement with the cell surface lectin receptor MRC1/CD206 and is currently being developed as an innate immune defense regulator to improve anti-tumor immunity in immunologically cold tumors. Herein, we describe a sensitive and specific liquid chromatography (LC) coupled to quadrupole electron spray tandem mass spectrometry method to measure positively charged HDPs and HDP peptide fragments in complex biological matrices. Carboxylic acid magnetic beads were used as an affinity-capturing agent to extract the positively charged RP-182 from both mouse plasma and tissue homogenates. Beads were eluted with 0.1% (v/v) formic acid and chromatographic separation was achieved on a Waters 2.1 × 100 mm, 3.5 µm XSelect Peptide CSH C18 column with a Vanguard pre-column of the same phase. MS/MS was performed on a Thermo TSQ Quantiva triple quadrupole mass spectrometer operating in Selected Reaction Monitoring (SRM) mode fragmenting the plus three parent ion 458.9+3 and monitoring ions 624.0+2, 550.5+2, and 597.3+1 for RP-182 and 462.4+3 > 629.1+2, 555.5+2, and 607.3+1 for isotopic RP-182 standard. The assay had good linearity ranging from 1 ng to 1000 ng in mouse plasma with the lower limit of detection for RP-182 at 1 ng in mouse plasma with good intra- and inter-sample precision and accuracy. Recovery ranged from 66% to 77% with minimum matrix effects. The method was successfully applied to an abbreviated pharmacokinetic study in mice after single IP injection of RP-182. The method was successfully tested on a second HDP, the 17mer D4E1, and the cationic human peptide hormone ghrelin suggesting that it might be a general sensitive method applicable to quantifying HDP peptides that are difficult to extract.


Assuntos
Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Animais , Peptídeos Catiônicos Antimicrobianos/sangue , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Ácidos Carboxílicos/química , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Grelina/sangue , Grelina/química , Grelina/isolamento & purificação , Limite de Detecção , Fenômenos Magnéticos , Camundongos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
17.
Sci Transl Med ; 12(530)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051227

RESUMO

Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.


Assuntos
Lectinas de Ligação a Manose , Macrófagos Associados a Tumor , Animais , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Lectinas Tipo C , Receptor de Manose , Camundongos , Receptores de Superfície Celular
18.
J Virol ; 82(12): 5860-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18400857

RESUMO

The human nuclear envelope proteins emerin and lamina-associated polypeptide 2alpha (LAP2alpha) have been proposed to aid in the early replication steps of human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). However, whether these factors are essential for HIV-1 or MLV infection has been questioned. Prior studies in which conflicting results were obtained were highly dependent on RNA interference-mediated gene silencing. To shed light on these contradictory results, we examined whether HIV-1 or MLV could infect primary cells from mice deficient for emerin, LAP2alpha, or both emerin and LAP2alpha. We observed HIV-1 and MLV infectivity in mouse embryonic fibroblasts (MEFs) from emerin knockout, LAP2alpha knockout, or emerin and LAP2alpha double knockout mice to be comparable in infectivity to wild-type littermate-derived MEFs, indicating that both emerin and LAP2alpha were dispensable for HIV-1 and MLV infection of dividing, primary mouse cells. Because emerin has been suggested to be important for infection of human macrophages by HIV-1, we also examined HIV-1 transduction of macrophages from wild-type mice or knockout mice, but again we did not observe a difference in susceptibility. These findings prompted us to reexamine the role of human emerin in supporting HIV-1 and MLV infection. Notably, both viruses efficiently infected human cells expressing high levels of dominant-negative emerin. We thus conclude that emerin and LAP2alpha are not required for the early replication of HIV-1 and MLV in mouse or human cells.


Assuntos
Proteínas de Ligação a DNA/genética , HIV-1/fisiologia , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Infecções por Retroviridae/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Humanos , Rim/citologia , Vírus da Leucemia Murina/patogenicidade , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína
19.
FASEB J ; 22(6): 1861-73, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18230682

RESUMO

The synaptic serine protease neurotrypsin is considered to be essential for the establishment and maintenance of cognitive brain functions, because humans lacking functional neurotrypsin suffer from severe mental retardation. Neurotrypsin cleaves agrin at two homologous sites, liberating a 90-kDa and a C-terminal 22-kDa fragment from the N-terminal moiety of agrin. Morphological analyses indicate that neurotrypsin is contained in presynaptic terminals and externalized in association with synaptic activity, while agrin is localized to the extracellular space at or in the vicinity of the synapse. Here, we present a detailed biochemical analysis of neurotrypsin-mediated agrin cleavage in the murine brain. In brain homogenates, we found that neurotrypsin exclusively cleaves glycanated variants of agrin. Studies with isolated synaptosomes obtained by subcellular fractionation from brains of wild-type and neurotrypsin-overexpressing mice revealed that neurotrypsin-dependent cleavage of agrin was concentrated at synapses, where the most heavily glycanated variants of agrin predominate. Because agrin has been shown to play an important role in the formation and the maintenance of excitatory synapses in the central nervous system, its local cleavage at the synapse implicates the neurotrypsin/agrin system in the regulation of adaptive reorganizations of the synaptic circuitry in the context of cognitive functions, such as learning and memory.


Assuntos
Agrina/metabolismo , Fragmentos de Peptídeos/metabolismo , Serina Endopeptidases/metabolismo , Sinapses/metabolismo , Agrina/química , Animais , Química Encefálica , Cognição , Camundongos , Fragmentos de Peptídeos/química , Polissacarídeos/análise , Serina Endopeptidases/análise , Sinapses/química
20.
Methods Mol Biol ; 512: 159-67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19347277

RESUMO

Despite the current availability of an impressive in vitro assay battery developed to quantitatively analyze the broad panel of small compounds and macromolecules that possess the inflammatory potential, little methodology exists nowadays that affords a researcher or clinician to quantify the ultimate output on the level of cell signaling response caused by inflammatory pathway stimulation. As a matter of fact, majority of analytical tools measure bona fide inflammatory substances (e.g., cytokines or chemokines) by their direct binding to secondary reagents such as specific antibodies or other selectively affine substrates with the final readout generated via quantification of the resulting complexes. Although specific and highly reproducible, this approach provides no discrimination between biologically active versus inactive input analyte nor does it address the differential biological potential for the questioned substances related to their in vivo stability and biodistribution. In a search for alternative solutions, a novel strategy is emerging that employs cell-based methods of inflammatory substance measurements allowing to detect and quantify the downstream effects of analyte's activity translated in terms of inflammatory pathways stimulation. In addition, application of cell based assays simultaneously permits entry level evaluation of compound toxicity and endows with a powerful approach to perform high-throughput screenings of, e.g., small molecule libraries in a quest for novel compounds capable of influencing the inflammation process.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Inflamação/induzido quimicamente , Fator de Necrose Tumoral alfa/farmacologia , Anti-Inflamatórios/análise , Células HeLa , Humanos , Preparações Farmacêuticas , Fator de Necrose Tumoral alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA