Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7936): 507-511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323782

RESUMO

Although precipitation patterns have long been known to shape plant distributions1, the effect of changing climate on the interactions of species and therefore community composition is far less understood2,3. Here, we explored how changes in precipitation alter competitive dynamics via direct effects on individual species, as well as by the changing strength of competitive interactions between species, using an annual grassland community in California. We grew plants under ambient and reduced precipitation in the field to parameterize a competition model4 with which we quantified the stabilizing niche and fitness differences that determine species coexistence in each rainfall regime. We show that reduced precipitation had little direct effect on species grown alone, but it qualitatively shifted predicted competitive outcomes for 10 of 15 species pairs. In addition, species pairs that were functionally more similar were less likely to experience altered outcomes, indicating that functionally diverse communities may be most threatened by changing interactions. Our results highlight how important it is to account for changes to species interactions when predicting species and community response to global change.


Assuntos
Biota , Mudança Climática , Pradaria , Fenômenos Fisiológicos Vegetais , Plantas , Chuva , Clima , Plantas/classificação , Especificidade da Espécie , California
2.
Proc Natl Acad Sci U S A ; 119(25): e2026733119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35709320

RESUMO

Safeguarding Earth's tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We quantify range protection and anthropogenic pressures for each species and develop conservation priorities across taxonomic, phylogenetic, and functional diversity dimensions. We also assess the effectiveness of several influential proposed conservation prioritization frameworks to protect the top 17% and top 50% of tree priority areas. We find that an average of 50.2% of a tree species' range occurs in 110-km grid cells without any protected areas (PAs), with 6,377 small-range tree species fully unprotected, and that 83% of tree species experience nonnegligible human pressure across their range on average. Protecting high-priority areas for the top 17% and 50% priority thresholds would increase the average protected proportion of each tree species' range to 65.5% and 82.6%, respectively, leaving many fewer species (2,151 and 2,010) completely unprotected. The priority areas identified for trees match well to the Global 200 Ecoregions framework, revealing that priority areas for trees would in large part also optimize protection for terrestrial biodiversity overall. Based on range estimates for >46,000 tree species, our findings show that a large proportion of tree species receive limited protection by current PAs and are under substantial human pressure. Improved protection of biodiversity overall would also strongly benefit global tree diversity.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Árvores , Conservação dos Recursos Naturais/métodos , Humanos , Filogenia , Árvores/classificação
3.
Ecol Lett ; 26(8): 1452-1465, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37322850

RESUMO

Recent work has shown that evaluating functional trait distinctiveness, the average trait distance of a species to other species in a community offers promising insights into biodiversity dynamics and ecosystem functioning. However, the ecological mechanisms underlying the emergence and persistence of functionally distinct species are poorly understood. Here, we address the issue by considering a heterogeneous fitness landscape whereby functional dimensions encompass peaks representing trait combinations yielding positive population growth rates in a community. We identify four ecological cases contributing to the emergence and persistence of functionally distinct species. First, environmental heterogeneity or alternative phenotypic designs can drive positive population growth of functionally distinct species. Second, sink populations with negative population growth can deviate from local fitness peaks and be functionally distinct. Third, species found at the margin of the fitness landscape can persist but be functionally distinct. Fourth, biotic interactions (positive or negative) can dynamically alter the fitness landscape. We offer examples of these four cases and guidelines to distinguish between them. In addition to these deterministic processes, we explore how stochastic dispersal limitation can yield functional distinctiveness. Our framework offers a novel perspective on the relationship between fitness landscape heterogeneity and the functional composition of ecological assemblages.


Assuntos
Biodiversidade , Ecossistema , Crescimento Demográfico , Fenótipo
4.
Ecol Lett ; 25(7): 1604-1617, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35651315

RESUMO

When species simultaneously compete with two or more species of competitor, higher-order interactions (HOIs) can lead to emergent properties not present when species interact in isolated pairs. To extend ecological theory to multi-competitor communities, ecologists must confront the challenges of measuring and interpreting HOIs in models of competition fit to data from nature. Such efforts are hindered by the fact that different studies use different definitions, and these definitions have unclear relationships to one another. Here, we propose a distinction between 'soft' HOIs, which identify possible interaction modification by competitors, and 'hard' HOIs, which identify interactions uniquely emerging in systems with three or more competitors. We show how these two classes of HOI differ in their motivation and interpretation, as well as the tests one uses to identify them in models fit to data. We then show how to operationalise this structure of definitions by analysing the results of a simulated competition experiment underlain by a consumer resource model. In the course of doing so, we clarify the challenges of interpreting HOIs in nature, and suggest a more precise framing of this research endeavour to catalyse further investigations.


Assuntos
Biota
5.
Am Nat ; 197(1): E30-E39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417516

RESUMO

AbstractSoil microorganisms influence a variety of processes in plant communities. Many theoretical and empirical studies have shown that dynamic feedbacks between plants and soil microbes can stabilize plant coexistence by generating negative frequency-dependent plant population dynamics. However, inferring the net effects of soil microbes on plant coexistence requires also quantifying the degree to which they provide one species an average fitness advantage, an effect that has received little empirical attention. We conducted a greenhouse study to quantify microbially mediated stabilization and fitness differences among 15 pairs of annual plants that co-occur in southern California grasslands. We found that although soil microbes frequently generate negative frequency-dependent dynamics that stabilize plant interactions, they simultaneously generate large average fitness differences between species. The net result is that if the plant species are otherwise competitively equivalent, the impact of plant-soil feedbacks is to often favor species exclusion over coexistence, a result that becomes evident only by quantifying the microbially mediated fitness difference. Our work highlights that comparing the stabilizing effects of plant-soil feedbacks to the fitness difference they generate is essential for understanding the influence of soil microbes on plant diversity.


Assuntos
Magnoliopsida/fisiologia , Microbiologia do Solo , Magnoliopsida/microbiologia , Dinâmica Populacional
6.
Proc Natl Acad Sci U S A ; 115(21): 5480-5485, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29724857

RESUMO

Understanding variation in leaf functional traits-including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus-is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.


Assuntos
Fotossíntese , Folhas de Planta/química , Folhas de Planta/metabolismo , Plantas/química , Plantas/metabolismo , Locos de Características Quantitativas , Florestas , Folhas de Planta/genética , Plantas/classificação , Plantas/genética , Especificidade da Espécie
7.
Proc Natl Acad Sci U S A ; 114(51): E10937-E10946, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29196525

RESUMO

Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.


Assuntos
Ecossistema , Plantas , Característica Quantitativa Herdável , Meio Ambiente , Geografia , Modelos Estatísticos , Dispersão Vegetal , Análise Espacial
8.
Ecol Lett ; 22(8): 1178-1191, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31134744

RESUMO

Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency-dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency-dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant-microbe interactions influence plant diversity.


Assuntos
Biodiversidade , Plantas , Microbiologia do Solo , Dinâmica Populacional , Solo
9.
Ecol Lett ; 22(7): 1126-1135, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31066203

RESUMO

Latitudinal and elevational richness gradients have received much attention from ecologists but there is little consensus on underlying causes. One possible proximate cause is increased levels of species turnover, or ß diversity, in the tropics compared to temperate regions. Here, we leverage a large botanical dataset to map taxonomic and phylogenetic ß diversity, as mean turnover between neighboring 100 × 100 km cells, across the Americas and determine key climatic drivers. We find taxonomic and tip-weighted phylogenetic ß diversity is higher in the tropics, but that basal-weighted phylogenetic ß diversity is highest in temperate regions. Supporting Janzen's 'mountain passes' hypothesis, tropical mountainous regions had higher ß diversity than temperate regions for taxonomic and tip-weighted metrics. The strongest climatic predictors of turnover were average temperature and temperature seasonality. Taken together, these results suggest ß diversity is coupled to latitudinal richness gradients and that temperature is a major driver of plant community composition and change.


Assuntos
Biodiversidade , Plantas , Temperatura , Filogenia
10.
Ecol Lett ; 22(5): 855-865, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30828955

RESUMO

Climatic changes have profound effects on the distribution of biodiversity, but untangling the links between climatic change and ecosystem functioning is challenging, particularly in high diversity systems such as tropical forests. Tropical forests may also show different responses to a changing climate, with baseline climatic conditions potentially inducing differences in the strength and timing of responses to droughts. Trait-based approaches provide an opportunity to link functional composition, ecosystem function and environmental changes. We demonstrate the power of such approaches by presenting a novel analysis of long-term responses of different tropical forest to climatic changes along a rainfall gradient. We explore how key ecosystem's biogeochemical properties have shifted over time as a consequence of multi-decadal drying. Notably, we find that drier tropical forests have increased their deciduous species abundance and generally changed more functionally than forests growing in wetter conditions, suggesting an enhanced ability to adapt ecologically to a drying environment.


Assuntos
Biodiversidade , Mudança Climática , Secas , Árvores , Florestas , Clima Tropical
11.
Ecology ; 100(3): e02591, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582633

RESUMO

Environmental filtering and dispersal limitation can both maintain diversity in plant communities by aggregating conspecifics, but parsing the contribution of each process has proven difficult empirically. Here, we assess the contribution of filtering and dispersal limitation to the spatial aggregation patterns of 456 tree species in a hyperdiverse Amazonian forest and find distinct functional trait correlates of interspecific variation in these processes. Spatial point process model analysis revealed that both mechanisms are important drivers of intraspecific aggregation for the majority of species. Leaf drought tolerance was correlated with species topographic distributions in this aseasonal rainforest, showing that future increases in drought severity could significantly impact community structure. In addition, seed mass was associated with the spatial scale and density of dispersal-related aggregation. Taken together, these results suggest environmental filtering and dispersal limitation act in concert to influence the spatial and functional structure of diverse forest communities.


Assuntos
Florestas , Árvores , Fenótipo , Folhas de Planta , Floresta Úmida , Clima Tropical
12.
Ecology ; 99(10): 2272-2283, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29975420

RESUMO

Abiotic constraints and biotic interactions act simultaneously to shape communities. However, these community assembly mechanisms are often studied independently, which can limit understanding of how they interact to affect species dynamics and distributions. We develop a hierarchical Bayesian neighborhood modeling approach to quantify the simultaneous effects of topography and crowding by neighbors on the growth of 124,704 individual stems ≥1 cm DBH for 1,047 tropical tree species in a 25-ha mapped rainforest plot in Amazonian Ecuador. We build multi-level regression models to evaluate how four key functional traits (specific leaf area, maximum tree size, wood specific gravity and seed mass) mediate tree growth response to topography and neighborhood crowding. Tree growth is faster in valleys than on ridges and is reduced by neighborhood crowding. Topography and crowding interact to influence tree growth in ~10% of the species. Specific leaf area, maximum tree size and seed mass are associated with growth responses to topography, but not with responses to neighborhood crowding or with the interaction between topography and crowding. In sum, our study reveals that topography and neighborhood crowding each influence tree growth in tropical forests, but act largely independently in shaping species distributions. While traits were associated with species response to topography, their role in species response to neighborhood crowding was less clear, which suggests that trait effects on neighborhood dynamics may depend on the direction (negative/positive) and degree of symmetry of biotic interactions. Our study emphasizes the importance of simultaneously assessing the individual and interactive role of multiple mechanisms in shaping species dynamics in high diversity tropical systems.


Assuntos
Florestas , Floresta Úmida , Teorema de Bayes , Equador , Clima Tropical , Madeira
13.
Proc Natl Acad Sci U S A ; 112(3): 797-802, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561561

RESUMO

Understanding the processes maintaining species diversity is a central problem in ecology, with implications for the conservation and management of ecosystems. Although biologists often assume that trait differences between competitors promote diversity, empirical evidence connecting functional traits to the niche differences that stabilize species coexistence is rare. Obtaining such evidence is critical because traits also underlie the average fitness differences driving competitive exclusion, and this complicates efforts to infer community dynamics from phenotypic patterns. We coupled field-parameterized mathematical models of competition between 102 pairs of annual plants with detailed sampling of leaf, seed, root, and whole-plant functional traits to relate phenotypic differences to stabilizing niche and average fitness differences. Single functional traits were often well correlated with average fitness differences between species, indicating that competitive dominance was associated with late phenology, deep rooting, and several other traits. In contrast, single functional traits were poorly correlated with the stabilizing niche differences that promote coexistence. Niche differences could only be described by combinations of traits, corresponding to differentiation between species in multiple ecological dimensions. In addition, several traits were associated with both fitness differences and stabilizing niche differences. These complex relationships between phenotypic differences and the dynamics of competing species argue against the simple use of single functional traits to infer community assembly processes but lay the groundwork for a theoretically justified trait-based community ecology.


Assuntos
Fenômenos Fisiológicos Vegetais , Especificidade da Espécie
14.
Ecol Lett ; 20(4): 539-553, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28220612

RESUMO

Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity [log mortality (trees trees-1  year-1 ) increased 0.46 (95% CI = 0.2-0.7) with one SPEI unit drought intensity]. We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future.


Assuntos
Secas , Ecossistema , Árvores/fisiologia , Longevidade , Folhas de Planta/fisiologia , Madeira/fisiologia
15.
Ecology ; 98(5): 1193-1200, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28241383

RESUMO

Intransitive competition is often projected to be a widespread mechanism of species coexistence in ecological communities. However, it is unknown how much of the coexistence we observe in nature results from this mechanism when species interactions are also stabilized by pairwise niche differences. We combined field-parameterized models of competition among 18 annual plant species with tools from network theory to quantify the prevalence of intransitive competitive relationships. We then analyzed the predicted outcome of competitive interactions with and without pairwise niche differences. Intransitive competition was found for just 15-19% of the 816 possible triplets, and this mechanism was never sufficient to stabilize the coexistence of the triplet when the pair-wise niche differences between competitors were removed. Of the transitive and intransitive triplets, only four were predicted to coexist and these were more similar in multidimensional trait space defined by 11 functional traits than non-coexisting triplets. Our results argue that intransitive competition may be less frequent than recently posed, and that even when it does operate, pairwise niche differences may be key to possible coexistence.


Assuntos
Ecossistema , Plantas , Modelos Biológicos , Fenótipo
16.
Proc Natl Acad Sci U S A ; 111(38): 13745-50, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25225365

RESUMO

The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha (within local assemblages), beta (among assemblages), and gamma (regional pool) scales. We test these predictions by quantifying hypervolumes constructed from functional traits representing major axes of plant strategy variation (specific leaf area, plant height, and seed mass) in tree assemblages spanning the temperate and tropical New World. Alpha-scale trait volume decreases with absolute latitude and is often lower than sampling expectation, consistent with environmental filtering theory. Beta-scale overlap decays with geographic distance fastest in the temperate zone, again consistent with environmental filtering theory. In contrast, gamma-scale trait space shows a hump-shaped relationship with absolute latitude, consistent with no theory. Furthermore, the overall temperate trait hypervolume was larger than the overall tropical hypervolume, indicating that the temperate zone permits a wider range of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory.


Assuntos
Biodiversidade , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Característica Quantitativa Herdável , Árvores/fisiologia
17.
Ecol Lett ; 19(9): 1062-70, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27358248

RESUMO

As distinct community assembly processes can produce similar community patterns, assessing the ecological mechanisms promoting coexistence in hyperdiverse rainforests remains a considerable challenge. We use spatially explicit neighbourhood models of tree growth to quantify how functional trait and phylogenetic similarities predict variation in growth and crowding effects for the 315 most abundant tree species in a 25-ha lowland rainforest plot in Ecuador. We find that functional trait differences reflect variation in (1) species maximum potential growth, (2) the intensity of interspecific interactions for some species, and (3) species sensitivity to neighbours. We find that neighbours influenced tree growth in 28% of the 315 focal tree species. Neighbourhood effects are not detected in the remaining 72%, which may reflect the low statistical power to model rare taxa and/or species insensitivity to neighbours. Our results highlight the spectrum of ways in which functional trait differences can shape community dynamics in highly diverse rainforests.


Assuntos
Biodiversidade , Características de História de Vida , Modelos Biológicos , Floresta Úmida , Árvores/crescimento & desenvolvimento , Equador , Filogenia , Árvores/classificação
18.
Ecology ; 97(2): 347-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27145610

RESUMO

Recent theory predicts that stochastic dilution effects may result in species-rich communities with statistically independent species spatial distributions, even if the underlying ecological processes structuring the community are driven by deterministic niche differences. Stochastic dilution is a consequence of the stochastic geometry of biodiversity where the identities of the nearest neighbors of individuals of a given species are largely unpredictable. Under such circumstances, the outcome of deterministic species interactions may vary greatly among individuals of a given species. Consequently, nonrandom patterns in the biotic neighborhoods of species, which might be expected from coexistence or community assembly theory (e.g., individuals of a given species are neighbored by phylogenetically similar species), are weakened or do not emerge, resulting in statistical independence of species spatial distributions. We used data on phylogenetic and functional similarity of tree species in five large forest dynamics plots located across a gradient of species richness to test predictions of the stochastic dilution hypothesis. To quantify the biotic neighborhood of a focal species we used the mean phylogenetic (or functional) dissimilarity of the individuals of the focal species to all species within a local neighborhood. We then compared the biotic neighborhood of species to predictions from stochastic null models to test if a focal species was surrounded by more or less similar species than expected by chance. The proportions of focal species that showed spatial independence with respect to their biotic neighborhoods increased with total species richness. Locally dominant, high-abundance species were more likely to be surrounded by species that were statistically more similar or more dissimilar than expected by chance. Our results suggest that stochasticity may play a stronger role in shaping the spatial structure of species rich tropical forest communities than it does in species poorer forests. These findings represent an important step towards understanding the factors that govern the spatial configuration of local biotic communities. The stochastic dilution effect is a simple geometric mechanism that can explain why species' spatial distributions in species-rich communities approximate independence from their biotic neighborhood, even if deterministic niche processes are in effect.


Assuntos
Biodiversidade , Florestas , Modelos Biológicos , Filogenia , Processos Estocásticos
19.
Ecol Lett ; 18(12): 1406-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26415616

RESUMO

Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.


Assuntos
Biodiversidade , Fenótipo , Fenômenos Fisiológicos Vegetais , Especificidade da Espécie
20.
Ecology ; 96(4): 972-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26230018

RESUMO

We present a framework to measure the strength of environmental filtering and disequilibrium of the species composition of a local community across time, relative to past, current, and future climates. We demonstrate the framework by measuring the impact of climate change on New World forests, integrating data for climate niches of more than 14000 species, community composition of 471 New World forest plots, and observed climate across the most recent glacial-interglacial interval. We show that a majority of communities have species compositions that are strongly filtered and are more in equilibrium with current climate than random samples from the regional pool. Variation in the level of current community disequilibrium can be predicted from Last Glacial Maximum climate and will increase with near-future climate change.


Assuntos
Mudança Climática , Florestas , Modelos Teóricos , América , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA