Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(32): 19531-19540, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35938445

RESUMO

Charge-transfer plasmons (CTP) in complexes of metal nanoparticles bridged by conductive molecular linkers are theoretically analysed using a statistic approach. The applied model takes into account the kinetic energy of carriers inside the linkers including its dissipation and the Coulomb energy of the charged nanoparticles. The plasmons are statistically investigated for systems containing a large number of complexes of bridged nanoparticles of realistic sizes generated using a simplified molecular dynamics algorithm, where the geometries of the complexes are dependent on the rate of connection of the linkers with the nanoparticles. As illustrated, the distribution of CTP frequencies in the generated nanoparticle complexes is very inhomogeneous. It has a narrow peak, corresponding to CTP plasmons in dimers, and two broad peaks, corresponding mainly to low and high-frequency oscillations in chains of connected nanoparticles. It is found that in general the plasmon frequencies depend inversely on the value of the complex dipole moment of the plasmon oscillation, where the assumption follows that low-frequency plasmons will be more efficiently excited in an external electromagnetic field. To calculate the CTP energy absorption in this field two model modifications are proposed: a system-external electromagnetic field interaction model and a simplified broadening plasmon peak model where the plasmons are calculated at first without damping and where the delta-shaped oscillation peaks are broadened then due to the damping. It is demonstrated that both modifications lead to a wide and almost monotonic absorption in the IR region for all generated systems containing a large number of bridged nanoparticles due to the presence of a large number of CTPs in this region.

2.
J Chem Phys ; 127(16): 164703, 2007 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17979367

RESUMO

A new kind of carbon foam, which is based on the welding of single-walled carbon nanotubes, is built in a computer simulation. Its precisely defined architecture and all atomic positions allow one to perform detailed theoretical analysis of the properties. Such foam is as light as 19 of steel, while its stiffness is similar and nearly isotropic, and it represents a strong three-dimensional material with various possible applications. Furthermore, its nanoporous structure is accessible to molecular hydrogen and the potential surface analysis indicates that it should be an excellent hydrogen storage medium. Importantly, such foam is a feasible structure that can be produced based on the known tube/fullerene welding techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA