Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 598(7879): 205-213, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616060

RESUMO

During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.


Assuntos
Encéfalo/citologia , Epigenômica , Neurogênese , Análise de Célula Única , Atlas como Assunto , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Suscetibilidade a Doenças , Elementos Facilitadores Genéticos , Humanos , Neurônios/citologia , Neurônios/metabolismo , Organoides/citologia , Tretinoína/metabolismo
2.
Nucleic Acids Res ; 52(4): 1613-1627, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38296821

RESUMO

The advent of perturbation-based massively parallel reporter assays (MPRAs) technique has facilitated the delineation of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. In this study, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Within this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. While our analyses show very similar results across multiple benchmarking metrics, the predictive modeling for the approach involving random nucleotide shuffling shows significant robustness compared with the other two approaches. Thus, we recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA, followed by a coherence check to prevent the introduction of other variations of the target motifs. In summary, our evaluation framework and the benchmarking findings create a resource of computational pipelines and highlight the potential of perturbation-MPRA in predicting non-coding regulatory activities.


Assuntos
Técnicas Genéticas , Sequências Reguladoras de Ácido Nucleico , Nucleotídeos
3.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37598422

RESUMO

The advent of single-cell RNA sequencing (scRNA-seq) technologies has enabled gene expression profiling at the single-cell resolution, thereby enabling the quantification and comparison of transcriptional variability among individual cells. Although alterations in transcriptional variability have been observed in various biological states, statistical methods for quantifying and testing differential variability between groups of cells are still lacking. To identify the best practices in differential variability analysis of single-cell gene expression data, we propose and compare 12 statistical pipelines using different combinations of methods for normalization, feature selection, dimensionality reduction and variability calculation. Using high-quality synthetic scRNA-seq datasets, we benchmarked the proposed pipelines and found that the most powerful and accurate pipeline performs simple library size normalization, retains all genes in analysis and uses denSNE-based distances to cluster medoids as the variability measure. By applying this pipeline to scRNA-seq datasets of COVID-19 and autism patients, we have identified cellular variability changes between patients with different severity status or between patients and healthy controls.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Expressão Gênica , Análise de Sequência de RNA/métodos , Análise por Conglomerados
4.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834916

RESUMO

Autism spectrum disorder (ASD) is a common, complex, and highly heritable condition with contributions from both common and rare genetic variations. While disruptive, rare variants in protein-coding regions clearly contribute to symptoms, the role of rare non-coding remains unclear. Variants in these regions, including promoters, can alter downstream RNA and protein quantity; however, the functional impacts of specific variants observed in ASD cohorts remain largely uncharacterized. Here, we analyzed 3600 de novo mutations in promoter regions previously identified by whole-genome sequencing of autistic probands and neurotypical siblings to test the hypothesis that mutations in cases have a greater functional impact than those in controls. We leveraged massively parallel reporter assays (MPRAs) to detect transcriptional consequences of these variants in neural progenitor cells and identified 165 functionally high confidence de novo variants (HcDNVs). While these HcDNVs are enriched for markers of active transcription, disruption to transcription factor binding sites, and open chromatin, we did not identify differences in functional impact based on ASD diagnostic status.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Mutação , Transtorno Autístico/genética , Regiões Promotoras Genéticas
5.
Hum Mutat ; 40(9): 1299-1313, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31131957

RESUMO

Deciphering the potential of noncoding loci to influence gene regulation has been the subject of intense research, with important implications in understanding genetic underpinnings of human diseases. Massively parallel reporter assays (MPRAs) can measure regulatory activity of thousands of DNA sequences and their variants in a single experiment. With increasing number of publically available MPRA data sets, one can now develop data-driven models which, given a DNA sequence, predict its regulatory activity. Here, we performed a comprehensive meta-analysis of several MPRA data sets in a variety of cellular contexts. We first applied an ensemble of methods to predict MPRA output in each context and observed that the most predictive features are consistent across data sets. We then demonstrate that predictive models trained in one cellular context can be used to predict MPRA output in another, with loss of accuracy attributed to cell-type-specific features. Finally, we show that our approach achieves top performance in the Fifth Critical Assessment of Genome Interpretation "Regulation Saturation" Challenge for predicting effects of single-nucleotide variants. Overall, our analysis provides insights into how MPRA data can be leveraged to highlight functional regulatory regions throughout the genome and can guide effective design of future experiments by better prioritizing regions of interest.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequências Reguladoras de Ácido Nucleico , Genoma Humano , Humanos , Modelos Genéticos , Análise de Sequência de DNA/métodos , Software
6.
Hum Mutat ; 40(9): 1280-1291, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106481

RESUMO

The integrative analysis of high-throughput reporter assays, machine learning, and profiles of epigenomic chromatin state in a broad array of cells and tissues has the potential to significantly improve our understanding of noncoding regulatory element function and its contribution to human disease. Here, we report results from the CAGI 5 regulation saturation challenge where participants were asked to predict the impact of nucleotide substitution at every base pair within five disease-associated human enhancers and nine disease-associated promoters. A library of mutations covering all bases was generated by saturation mutagenesis and altered activity was assessed in a massively parallel reporter assay (MPRA) in relevant cell lines. Reporter expression was measured relative to plasmid DNA to determine the impact of variants. The challenge was to predict the functional effects of variants on reporter expression. Comparative analysis of the full range of submitted prediction results identifies the most successful models of transcription factor binding sites, machine learning algorithms, and ways to choose among or incorporate diverse datatypes and cell-types for training computational models. These results have the potential to improve the design of future studies on more diverse sets of regulatory elements and aid the interpretation of disease-associated genetic variation.


Assuntos
DNA/química , Epigenômica/métodos , Mutação Puntual , Sítios de Ligação , Linhagem Celular , Cromatina/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Humanos , Aprendizado de Máquina , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
7.
Hum Mutat ; 38(9): 1240-1250, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28220625

RESUMO

In many human diseases, associated genetic changes tend to occur within noncoding regions, whose effect might be related to transcriptional control. A central goal in human genetics is to understand the function of such noncoding regions: given a region that is statistically associated with changes in gene expression (expression quantitative trait locus [eQTL]), does it in fact play a regulatory role? And if so, how is this role "coded" in its sequence? These questions were the subject of the Critical Assessment of Genome Interpretation eQTL challenge. Participants were given a set of sequences that flank eQTLs in humans and were asked to predict whether these are capable of regulating transcription (as evaluated by massively parallel reporter assays), and whether this capability changes between alternative alleles. Here, we report lessons learned from this community effort. By inspecting predictive properties in isolation, and conducting meta-analysis over the competing methods, we find that using chromatin accessibility and transcription factor binding as features in an ensemble of classifiers or regression models leads to the most accurate results. We then characterize the loci that are harder to predict, putting the spotlight on areas of weakness, which we expect to be the subject of future studies.


Assuntos
Biologia Computacional/métodos , Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Locos de Características Quantitativas
8.
PLoS Genet ; 10(9): e1004587, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210734

RESUMO

Associations between the level of single transcripts and single corresponding genetic variants, expression single nucleotide polymorphisms (eSNPs), have been extensively studied and reported. However, most expression traits are complex, involving the cooperative action of multiple SNPs at different loci affecting multiple genes. Finding these cooperating eSNPs by exhaustive search has proven to be statistically challenging. In this paper we utilized availability of sequencing data with transcriptional profiles in the same cohorts to identify two kinds of usual suspects: eSNPs that alter coding sequences or eSNPs within the span of transcription factors (TFs). We utilize a computational framework for considering triplets, each comprised of a SNP and two associated genes. We examine pairs of triplets with such cooperating source eSNPs that are both associated with the same pair of target genes. We characterize such quartets through their genomic, topological and functional properties. We establish that this regulatory structure of cooperating quartets is frequent in real data, but is rarely observed in permutations. eSNP sources are mostly located on different chromosomes and away from their targets. In the majority of quartets, SNPs affect the expression of the two gene targets independently of one another, suggesting a mutually independent rather than a directionally dependent effect. Furthermore, the directions in which the minor allele count of the SNP affects gene expression within quartets are consistent, so that the two source eSNPs either both have the same effect on the target genes or both affect one gene in the opposite direction to the other. Same-effect eSNPs are observed more often than expected by chance. Cooperating quartets reported here in a human system might correspond to bi-fans, a known network motif of four nodes previously described in model organisms. Overall, our analysis offers insights regarding the fine motif structure of human regulatory networks.


Assuntos
Redes Reguladoras de Genes/genética , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína/genética , Alelos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Fatores de Transcrição/genética , Transcrição Gênica/genética
9.
BMC Bioinformatics ; 16: 164, 2015 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25980407

RESUMO

BACKGROUND: Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. RESULTS: NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. CONCLUSIONS: The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.


Assuntos
Bactérias/metabolismo , Biologia Computacional/métodos , Interações Hospedeiro-Parasita , Redes e Vias Metabólicas , Interações Microbianas , Software , Animais , Bactérias/classificação , Bactérias/genética , Humanos , Internet , Modelos Biológicos
10.
Nucleic Acids Res ; 40(13): e98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22447449

RESUMO

Cataloging the association of transcripts to genetic variants in recent years holds the promise for functional dissection of regulatory structure of human transcription. Here, we present a novel approach, which aims at elucidating the joint relationships between transcripts and single-nucleotide polymorphisms (SNPs). This entails detection and analysis of modules of transcripts, each weakly associated to a single genetic variant, together exposing a high-confidence association signal between the module and this 'main' SNP. To explore how transcripts in a module are related to causative loci for that module, we represent such dependencies by a graphical model. We applied our method to the existing data on genetics of gene expression in the liver. The modules are significantly more, larger and denser than found in permuted data. Quantification of the confidence in a module as a likelihood score, allows us to detect transcripts that do not reach genome-wide significance level. Topological analysis of each module identifies novel insights regarding the flow of causality between the main SNP and transcripts. We observe similar annotations of modules from two sources of information: the enrichment of a module in gene subsets and locus annotation of the genetic variants. This and further phenotypic analysis provide a validation for our methodology.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transcrição Gênica , Biologia Computacional/métodos , Genótipo , Humanos , Fígado/metabolismo , Fenótipo
11.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826254

RESUMO

Background: Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of regulatory programs this variation affects can shed light on the apparatuses of human diseases. Results: We collected epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we constructed networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks served as the base for a rich series of analyses, through which we demonstrated their temporal dynamics and enrichment for various disease-associated variants. We applied the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrated methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays. Conclusions: Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes. This includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.

12.
Bioinformatics ; 28(16): 2195-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22668793

RESUMO

UNLABELLED: NetCmpt is a tool for calculating the competitive potential between pairs of bacterial species. The score describes the effective metabolic overlap (EMO) between two species, derived from analyzing the topology of the corresponding metabolic models. NetCmpt is based on the EMO algorithm, developed and validated in previous studies. It takes as input lists of species-specific enzymatic reactions (EC numbers) and generates a matrix of the potential competition scores between all pairwise combinations. AVAILABILITY AND IMPLEMENTATION: NetCmpt is provided as both a web tool and a software package, designed for the use of non-computational biologists. The NetCmpt web tool, software, examples, and documentation are freely available online at http://app.agri.gov.il/shiri/NetComp.php.


Assuntos
Bactérias/metabolismo , Modelos Biológicos , Software , Algoritmos , Biologia Computacional/métodos , Internet , Redes e Vias Metabólicas , Especificidade da Espécie
13.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808807

RESUMO

The advent of the perturbation-based massively parallel reporter assays (MPRAs) technique has enabled delineating of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. Here, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Under this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. Although our analyses show similar while significant results in multiple metrics, the method of randomly shuffling nucleotides outperform the other two methods. Thus, we still recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA. The evaluation framework, together with the benchmarking findings in our work, creates a resource of computational pipelines and illustrates the promise of perturbation-MPRA for predicting non-coding regulatory activities.

14.
Nucleic Acids Res ; 38(12): 3857-68, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20194113

RESUMO

In their natural environments, microorganisms form complex systems of interactions. Understating the structure and organization of bacterial communities is likely to have broad medical and ecological consequences, yet a comprehensive description of the network of environmental interactions is currently lacking. Here, we mine co-occurrences in the scientific literature to construct such a network and demonstrate an expected pattern of association between the species' lifestyle and the recorded number of co-occurring partners. We further focus on the well-annotated gut community and show that most co-occurrence interactions of typical gut bacteria occur within this community. The network is then clustered into species-groups that significantly correspond with natural occurring communities. The relationships between resource competition, metabolic yield and growth rate within the clusters correspond with the r/K selection theory. Overall, these results support the constructed clusters as a first approximation of a bacterial ecosystem model. This comprehensive collection of predicted communities forms a new data resource for further systematic characterization of the ecological design principals shaping communities. Here, we demonstrate its utility for predicting cooperation and inhibition within communities.


Assuntos
Fenômenos Fisiológicos Bacterianos , Ecossistema , Microbiologia Ambiental , Interações Microbianas , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Mineração de Dados , PubMed
15.
Nat Commun ; 13(1): 1504, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35315433

RESUMO

Gene regulatory elements play a key role in orchestrating gene expression during cellular differentiation, but what determines their function over time remains largely unknown. Here, we perform perturbation-based massively parallel reporter assays at seven early time points of neural differentiation to systematically characterize how regulatory elements and motifs within them guide cellular differentiation. By perturbing over 2,000 putative DNA binding motifs in active regulatory regions, we delineate four categories of functional elements, and observe that activity direction is mostly determined by the sequence itself, while the magnitude of effect depends on the cellular environment. We also find that fine-tuning transcription rates is often achieved by a combined activity of adjacent activating and repressing elements. Our work provides a blueprint for the sequence components needed to induce different transcriptional patterns in general and specifically during neural differentiation.


Assuntos
Bioensaio , Sequências Reguladoras de Ácido Nucleico , Sequências Reguladoras de Ácido Nucleico/genética
16.
PLoS Comput Biol ; 6(2): e1000690, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195496

RESUMO

The evolutionary origins of genetic robustness are still under debate: it may arise as a consequence of requirements imposed by varying environmental conditions, due to intrinsic factors such as metabolic requirements, or directly due to an adaptive selection in favor of genes that allow a species to endure genetic perturbations. Stratifying the individual effects of each origin requires one to study the pertaining evolutionary forces across many species under diverse conditions. Here we conduct the first large-scale computational study charting the level of robustness of metabolic networks of hundreds of bacterial species across many simulated growth environments. We provide evidence that variations among species in their level of robustness reflect ecological adaptations. We decouple metabolic robustness into two components and quantify the extents of each: the first, environmental-dependent, is responsible for at least 20% of the non-essential reactions and its extent is associated with the species' lifestyle (specialized/generalist); the second, environmental-independent, is associated (correlation = approximately 0.6) with the intrinsic metabolic capacities of a species-higher robustness is observed in fast growers or in organisms with an extensive production of secondary metabolites. Finally, we identify reactions that are uniquely susceptible to perturbations in human pathogens, potentially serving as novel drug-targets.


Assuntos
Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biologia Computacional/métodos , Modelos Genéticos , Biologia de Sistemas/métodos , Simulação por Computador , Meio Ambiente , Variação Genética , Redes e Vias Metabólicas , Seleção Genética
17.
Proc Natl Acad Sci U S A ; 105(19): 6976-81, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18460604

RESUMO

Deciphering the modular organization of metabolic networks and understanding how modularity evolves have attracted tremendous interest in recent years. Here, we present a comprehensive large scale characterization of modularity across the bacterial tree of life, systematically quantifying the modularity of the metabolic networks of >300 bacterial species. Three main determinants of metabolic network modularity are identified. First, network size is an important topological determinant of network modularity. Second, several environmental factors influence network modularity, with endosymbionts and mammal-specific pathogens having lower modularity scores than bacterial species that occupy a wider range of niches. Moreover, even among the pathogens, those that alternate between two distinct niches, such as insect and mammal, tend to have relatively high metabolic network modularity. Third, horizontal gene transfer is an important force that contributes significantly to metabolic modularity. We additionally reconstruct the metabolic network of ancestral bacterial species and examine the evolution of modularity across the tree of life. This reveals a trend of modularity decrease from ancestors to descendants that is likely the outcome of niche specialization and the incorporation of peripheral metabolic reactions.


Assuntos
Bactérias/metabolismo , Evolução Biológica , Redes e Vias Metabólicas , Proteobactérias/metabolismo
18.
Cell Syst ; 11(1): 2-4, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32702318

RESUMO

One snapshot of the peer review process for "Dissection of c-AMP Response Element Architecture by Using Genomic and Episomal Massively Parallel Reporter Assays" (Davis et al., 2020).


Assuntos
Regulação da Expressão Gênica , Elementos de Resposta , Monofosfato de Adenosina , Genômica , Plasmídeos , Elementos de Resposta/genética
19.
Nat Protoc ; 15(8): 2387-2412, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641802

RESUMO

Massively parallel reporter assays (MPRAs) can simultaneously measure the function of thousands of candidate regulatory sequences (CRSs) in a quantitative manner. In this method, CRSs are cloned upstream of a minimal promoter and reporter gene, alongside a unique barcode, and introduced into cells. If the CRS is a functional regulatory element, it will lead to the transcription of the barcode sequence, which is measured via RNA sequencing and normalized for cellular integration via DNA sequencing of the barcode. This technology has been used to test thousands of sequences and their variants for regulatory activity, to decipher the regulatory code and its evolution, and to develop genetic switches. Lentivirus-based MPRA (lentiMPRA) produces 'in-genome' readouts and enables the use of this technique in hard-to-transfect cells. Here, we provide a detailed protocol for lentiMPRA, along with a user-friendly Nextflow-based computational pipeline-MPRAflow-for quantifying CRS activity from different MPRA designs. The lentiMPRA protocol takes ~2 months, which includes sequencing turnaround time and data processing with MPRAflow.


Assuntos
Lentivirus/genética , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA/métodos , Fluxo de Trabalho , Sequência de Bases
20.
Cell Stem Cell ; 25(5): 713-727.e10, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31631012

RESUMO

Epigenomic regulation and lineage-specific gene expression act in concert to drive cellular differentiation, but the temporal interplay between these processes is largely unknown. Using neural induction from human pluripotent stem cells (hPSCs) as a paradigm, we interrogated these dynamics by performing RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase accessible chromatin using sequencing (ATAC-seq) at seven time points during early neural differentiation. We found that changes in DNA accessibility precede H3K27ac, which is followed by gene expression changes. Using massively parallel reporter assays (MPRAs) to test the activity of 2,464 candidate regulatory sequences at all seven time points, we show that many of these sequences have temporal activity patterns that correlate with their respective cell-endogenous gene expression and chromatin changes. A prioritization method incorporating all genomic and MPRA data further identified key transcription factors involved in driving neural fate. These results provide a comprehensive resource of genes and regulatory elements that orchestrate neural induction and illuminate temporal frameworks during differentiation.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Neurogênese/genética , Fatores de Transcrição/metabolismo , Acetilação , Sequenciamento de Cromatina por Imunoprecipitação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Biologia Computacional , Histonas/química , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Neurogênese/efeitos dos fármacos , RNA-Seq , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA