Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 45(5): 2546-2557, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27965414

RESUMO

A critical step of DNA single-strand break repair is the rapid recruitment of the scaffold protein XRCC1 that interacts with, stabilizes and stimulates multiple enzymatic components of the repair process. XRCC1 recruitment is promoted by PARP1, an enzyme that is activated following DNA damage and synthesizes ADP-ribose polymers that XRCC1 binds directly. However, cells possess two other DNA strand break-induced PARP enzymes, PARP2 and PARP3, for which the roles are unclear. To address their involvement in the recruitment of endogenous XRCC1 into oxidized chromatin we have established 'isogenic' human diploid cells in which PARP1 and/or PARP2, or PARP3 are deleted. Surprisingly, we show that either PARP1 or PARP2 are sufficient for near-normal XRCC1 recruitment at oxidative single-strand breaks (SSBs) as indicated by the requirement for loss of both proteins to greatly reduce or ablate XRCC1 chromatin binding following H2O2 treatment. Similar results were observed for PNKP; an XRCC1 protein partner important for repair of oxidative SSBs. Notably, concentrations of PARP inhibitor >1000-fold higher than the IC50 were required to ablate both ADP-ribosylation and XRCC1 chromatin binding following H2O2 treatment. These results demonstrate that very low levels of ADP-ribosylation, synthesized by either PARP1 or PARP2, are sufficient for XRCC1 recruitment following oxidative stress.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Simples , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poli(ADP-Ribose) Polimerase-1/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Deleção de Genes , Humanos , Camundongos , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
2.
Bioconjug Chem ; 27(10): 2558-2574, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27602782

RESUMO

Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), MTABGNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of MTABGNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, MTABGNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of MTABGNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed MTABGNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach.


Assuntos
Exocitose , Ouro/química , Ouro/farmacocinética , Nanotubos/química , Polilisina/química , Polilisina/farmacocinética , Compostos de Amônio Quaternário/química , Compostos de Sulfidrila/química , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Meios de Cultura , Estabilidade de Medicamentos , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Citometria de Fluxo , Humanos , Lisossomos/efeitos dos fármacos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanotubos/análise , Proteoglicanas/química , Proteoglicanas/metabolismo , Compostos de Amônio Quaternário/síntese química
3.
J Biol Chem ; 287(32): 26702-14, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22711534

RESUMO

Tumor suppressor PML is induced under viral and genotoxic stresses by interferons and JAK-STAT signaling. However, the mechanism responsible for its cell type-specific regulation under non-stimulated conditions is poorly understood. To analyze the variation of PML expression, we utilized three human cell types, BJ fibroblasts and HeLa and U2OS cell lines, each with a distinct PML expression pattern. Analysis of JAK-STAT signaling in the three cell lines revealed differences in levels of activated STAT3 but not STAT1 correlating with PML mRNA and protein levels. RNAi-mediated knockdown of STAT3 decreased PML expression; both STAT3 level/activity and PML expression relied on IL6 secreted into culture media. We mapped the IL6-responsive sequence to an ISRE(-595/-628) element of the PML promoter. The PI3K/Akt/NFκB branch of IL6 signaling showed also cell-type dependence, being highest in BJ, intermediate in HeLa, and lowest in U2OS cells and correlated with IL6 secretion. RNAi-mediated knockdown of NEMO (NF-κ-B essential modulator), a key component of NFκB activation, suppressed NFκB targets LMP2 and IRF1 together with STAT3 and PML. Combined knockdown of STAT3 and NEMO did not further promote PML suppression, and it can be bypassed by exogenous IL6, indicating the NF-κB pathway acts upstream of JAK-STAT3 through induction of IL6. Our results indicate that the cell type-specific activity of IL6 signaling pathways governs PML expression under unperturbed growth conditions. As IL6 is induced in response to various viral and genotoxic stresses, this cytokine may regulate autocrine/paracrine induction of PML under these pathophysiological states as part of tissue adaptation to local stress.


Assuntos
Interleucina-6/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Primers do DNA , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Janus Quinases/metabolismo , Leucemia Promielocítica Aguda/patologia , Proteína da Leucemia Promielocítica , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição STAT/metabolismo
4.
Nat Commun ; 13(1): 5026, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028512

RESUMO

Mutations in BRAT1, encoding BRCA1-associated ATM activator 1, have been associated with neurodevelopmental and neurodegenerative disorders characterized by heterogeneous phenotypes with varying levels of clinical severity. However, the underlying molecular mechanisms of disease pathology remain poorly understood. Here, we show that BRAT1 tightly interacts with INTS9/INTS11 subunits of the Integrator complex that processes 3' ends of various noncoding RNAs and pre-mRNAs. We find that Integrator functions are disrupted by BRAT1 deletion. In particular, defects in BRAT1 impede proper 3' end processing of UsnRNAs and snoRNAs, replication-dependent histone pre-mRNA processing, and alter the expression of protein-coding genes. Importantly, impairments in Integrator function are also evident in patient-derived cells from BRAT1 related neurological disease. Collectively, our data suggest that defects in BRAT1 interfere with proper Integrator functions, leading to incorrect expression of RNAs and proteins, resulting in neurodegeneration.


Assuntos
Doenças Neurodegenerativas , Proteínas Nucleares , Processamento Pós-Transcricional do RNA , Histonas , Humanos , Mutação , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Fenótipo
5.
J Cell Mol Med ; 14(1-2): 357-67, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19650831

RESUMO

Cytolethal distending toxins (CDTs) are proteins produced and secreted by facultative pathogenic strains of Gram-negative bacteria with potentially genotoxic effects. Mammalian cells exposed to CDTs undergo cell type-dependent cell-cycle arrest or apoptosis; however, the cell fate responses to such intoxication are mechanistically incompletely understood. Here we show that both normal and cancer cells (BJ, IMR-90 and WI-38 fibroblasts, HeLa and U2-OS cell lines) that survive the acute phase of intoxication by Haemophilus ducreyi CDT possess the hallmarks of cellular senescence. This characteristic phenotype included persistently activated DNA damage signalling (detected as 53BP1/gammaH2AX(+) foci), enhanced senescence-associated beta-galactosidase activity, expansion of promyelocytic leukaemia nuclear compartments and induced expression of several cytokines (especially interleukins IL-6, IL-8 and IL-24), overall features shared by cells undergoing replicative or premature cellular senescence. We conclude that analogous to oncogenic, oxidative and replicative stresses, bacterial intoxication represents another pathophysiological stimulus that induces premature senescence, an intrinsic cellular response that may mechanistically underlie the 'distended' morphology evoked by CDTs. Finally, the activation of the two anticancer barriers, apoptosis and cellular senescence, together with evidence of chromosomal aberrations (micronucleation) reported here, support the emerging genotoxic and potentially oncogenic effects of this group of bacterial toxins, and warrant further investigation of their role(s) in human disease.


Assuntos
Toxinas Bacterianas/farmacologia , Linhagem Celular Tumoral , Senescência Celular/fisiologia , Citocinas/metabolismo , Dano ao DNA , Transdução de Sinais/fisiologia , Toxinas Bacterianas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/fisiologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Haemophilus ducreyi/metabolismo , Humanos , Fenótipo
6.
Nat Commun ; 11(1): 3391, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636369

RESUMO

Neurodegeneration is a common hallmark of individuals with hereditary defects in DNA single-strand break repair; a process regulated by poly(ADP-ribose) metabolism. Recently, mutations in the ARH3 (ADPRHL2) hydrolase that removes ADP-ribose from proteins have been associated with neurodegenerative disease. Here, we show that ARH3-mutated patient cells accumulate mono(ADP-ribose) scars on core histones that are a molecular memory of recently repaired DNA single-strand breaks. We demonstrate that the ADP-ribose chromatin scars result in reduced endogenous levels of important chromatin modifications such as H3K9 acetylation, and that ARH3 patient cells exhibit measurable levels of deregulated transcription. Moreover, we show that the mono(ADP-ribose) scars are lost from the chromatin of ARH3-defective cells in the prolonged presence of PARP inhibition, and concomitantly that chromatin acetylation is restored to normal. Collectively, these data indicate that ARH3 can act as an eraser of ADP-ribose chromatin scars at sites of PARP activity during DNA single-strand break repair.


Assuntos
Adenosina Difosfato Ribose/química , Cromatina/química , Quebras de DNA de Cadeia Simples , Reparo do DNA , Glicosídeo Hidrolases/genética , Mutação , Linhagem Celular Tumoral , Sobrevivência Celular , Fibroblastos , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Histonas/química , Humanos , Doenças Neurodegenerativas/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
7.
Cell Cycle ; 12(2): 251-62, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23255129

RESUMO

Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G(1) phase to G(2) and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G(1) cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression.


Assuntos
Dano ao DNA , Regulação da Expressão Gênica/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Mitose/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Primers do DNA/genética , Imunofluorescência , Humanos , Espectrometria de Massas , Fosforilação , Proteína Fosfatase 2C , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
8.
Aging (Albany NY) ; 4(12): 932-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23385065

RESUMO

Many cancers arise at sites of infection and inflammation. Cellular senescence, a permanent state of cell cycle arrest that provides a barrier against tumorigenesis, is accompanied by elevated proinflammatory cytokines such as IL1, IL6, IL8 and TNFα. Here we demonstrate that media conditioned by cells undergoing any of the three main forms of senescence, i.e. replicative, oncogene- and drug-induced, contain high levels of IL1, IL6, and TGFb capable of inducing reactive oxygen species (ROS)-mediated DNA damage response (DDR). Persistent cytokine signaling and activated DDR evoke senescence in normal bystander cells, accompanied by activation of the JAK/STAT, TGFß/SMAD and IL1/NFκB signaling pathways. Whereas inhibition of IL6/STAT signaling had no effect on DDR induction in bystander cells, inhibition of either TGFß/SMAD or IL1/NFκB pathway resulted in decreased ROS production and reduced DDR in bystander cells. Simultaneous inhibition of both TGFß/SMAD and IL1/NFκB pathways completely suppressed DDR indicating that IL1 and TGFß cooperate to induce and/or maintain bystander senescence. Furthermore, the observed IL1- and TGFß-induced expression of NAPDH oxidase Nox4 indicates a mechanistic link between the senescence-associated secretory phenotype (SASP) and DNA damage signaling as a feature shared by development of all major forms of paracrine bystander senescence.


Assuntos
Efeito Espectador/efeitos dos fármacos , Proliferação de Células , Senescência Celular/efeitos dos fármacos , Dano ao DNA , Etoposídeo/farmacologia , Genes ras , Interleucina-1/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Humanos , Interleucina-6/metabolismo , Janus Quinases/metabolismo , NADPH Oxidase 4 , NF-kappa B/metabolismo , Interferência de RNA , Fatores de Transcrição STAT/metabolismo , Proteínas Smad/metabolismo , Transfecção
9.
Cell Cycle ; 9(15): 3085-99, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20699642

RESUMO

The Promyelocytic leukemia protein (PML) tumor suppressor is upregulated in several forms of cellular senescence, however the mechanism of its induction is elusive. Here we show that genotoxic drugs that induce senescence, such as 5-bromo-2'deoxyuridine (BrdU), thymidine (TMD), distamycin A (DMA), aphidicolin (APH), etoposide (ET) and camptothecin (CPT) all evoke expansion of PML nuclear compartment and its association with persistent DNA lesions in several human cancer cell lines and normal diploid fibroblasts. This phenomenon was accompanied by elevation of PML transcripts after treatment with BrdU, TMD, DMA and CPT. Chemical inhibition of all JAK kinases and RNAi-mediated knock-down of JAK1 suppressed PML expression, implicating JAK/STAT-mediated signaling in regulation of the PML gene. As PML protein stability remained unchanged after drug treatment, decreased protein turnover was unlikely to explain the senescence-associated increased abundance of PML. Furthermore, binding activity of Interferon Stimulated Response Element (ISRE) within the PML gene promoter, and suppression of reporter gene activity after deletion of ISRE from the PML promoter region suggested that drug-induced PML transcription is controlled via transcription factors interacting with this element. Collectively, our data show that upregulation of the PML tumor suppressor in cellular senescence triggered by diverse drugs including clinically used anti-cancer chemotherapeutics relies on stimulation of PML transcription by JAK/STAT-mediated signaling, possibly evoked by the autocrine/paracrine activities of senescence-associated cytokines.


Assuntos
Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Janus Quinase 1/metabolismo , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Compartimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dano ao DNA/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Nucleares/genética , Proteína da Leucemia Promielocítica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA