Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 53(5): 689-99, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24560923

RESUMO

Composed of up to 1,000 phospho-anhydride bond-linked phosphate monomers, inorganic polyphosphate (polyP) is one of the most ancient, conserved, and enigmatic molecules in biology. Here we demonstrate that polyP functions as a hitherto unrecognized chaperone. We show that polyP stabilizes proteins in vivo, diminishes the need for other chaperone systems to survive proteotoxic stress conditions, and protects a wide variety of proteins against stress-induced unfolding and aggregation. In vitro studies reveal that polyP has protein-like chaperone qualities, binds to unfolding proteins with high affinity in an ATP-independent manner, and supports their productive refolding once nonstress conditions are restored. Our results uncover a universally important function for polyP and suggest that these long chains of inorganic phosphate may have served as one of nature's first chaperones, a role that continues to the present day.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Polifosfatos/metabolismo , Domínio Catalítico , Dicroísmo Circular , Farmacorresistência Bacteriana , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Luciferases/metabolismo , Oxirredução , Estresse Oxidativo , Oxigênio/metabolismo , Fenótipo , Desnaturação Proteica , Desdobramento de Proteína , Fatores de Tempo
2.
Biotechnol Bioeng ; 118(3): 1381-1392, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33399224

RESUMO

Engineering of synthetic microbial communities is emerging as a powerful new paradigm for performing various industrially, medically, and environmentally important processes. To reach the fullest potential, however, this approach requires further development in many aspects, a key one being regulating the community composition. Here we leverage well-established mechanisms in ecology which govern the relative abundance of multispecies ecosystems and develop a new tool for programming the composition of synthetic microbial communities. Using a simple model system consisting of two microorganisms Escherichia coli and Pseudomonas putida, which occupy different but partially overlapping thermal niches, we demonstrated that temperature regulation could be used to enable coexistence and program the community composition. We first investigated a constant temperature regime and showed that different temperatures led to different community compositions. Next, we invented a new cycling temperature regime and showed that it can dynamically tune the microbial community, achieving a wide range of compositions depending on parameters that are readily manipulatable. Our work provides conclusive proof of concept that temperature regulation is a versatile and powerful tool capable of programming compositions of synthetic microbial communities.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Consórcios Microbianos , Modelos Biológicos , Pseudomonas putida/crescimento & desenvolvimento
3.
Biopolymers ; 103(5): 296-302, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25546606

RESUMO

Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines.


Assuntos
Microscopia de Fluorescência , Congressos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA