RESUMO
BACKGROUND: Large-scale surveillance of molecular markers of anti-malarial drug resistance is an attractive method of resistance monitoring, to complement therapeutic efficacy studies in settings where the latter are logistically challenging. METHODS: Between 2014 and 2017, this study sampled malaria rapid diagnostic tests (RDTs), used in routine clinical care, from two health centres in Bissau, Guinea-Bissau. In order to obtain epidemiological insights, RDTs were collected together with patient data on age and sex. A subset of positive RDTs from one of the two sites (n = 2184) were tested for Plasmodium DNA content. Those testing positive for Plasmodium DNA by PCR (n = 1390) were used for library preparation, custom designed dual indexing and next generation Miseq targeted sequencing of Plasmodium falciparum genes pfcrt, pfmdr1, pfdhfr, pfdhps and pfk13. RESULTS: The study found a high frequency of the pfmdr1 codon 86N at 88-97%, a significant decrease of the pfcrt wildtype CVMNK haplotype and elevated levels of the pfdhfr/pfdhps quadruple mutant ranging from 33 to 51% between 2014 and 2017. No polymorphisms indicating artemisinin tolerance were discovered. The demographic data indicate a large proportion of young adults (66%, interquartile range 11-28 years) presenting with P. falciparum infections. While a total of 5532 gene fragments were successfully analysed on a single Illumina Miseq flow cell, PCR-positivity from the library preparation varied considerably from 13 to 87% for different amplicons. Furthermore, pre-screening of samples for Plasmodium DNA content proved necessary prior to library preparation. CONCLUSIONS: This study serves as a proof of concept for using leftover clinical material (used RDTs) for large-scale molecular surveillance, encompassing the inherent complications regarding to methodology and analysis when doing so. Factors such as RDT storage prior to DNA extraction and parasitaemia of the infection are likely to have an effect on whether or not parasite DNA can be successfully analysed, and are considered part of the reason the data yield is suboptimal. However, given the necessity of molecular surveillance of anti-malarial resistance in settings where poor infrastructure, poor economy, lack of educated staff and even surges of political instability remain major obstacles to performing clinical studies, obtaining the necessary data from used RDTs, despite suboptimal output, becomes a feasible, affordable and hence a justifiable method.
Assuntos
Testes Diagnósticos de Rotina/estatística & dados numéricos , Monitoramento Epidemiológico , Malária Falciparum/diagnóstico , Plasmodium falciparum/genética , Estudo de Prova de Conceito , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Guiné-Bissau , Humanos , Lactente , Recém-Nascido , Masculino , Adulto JovemRESUMO
BACKGROUND: Sulfadoxine-pyrimethamine (SP) is recommended for prophylactic treatment of malaria in pregnancy while artemisinin combination therapy is the recommended first-line anti-malarial treatment. Selection of SP resistance is ongoing since SP is readily available in health facilities and in private drug shops in sub-Saharan Africa. This study reports on the prevalence and distribution of Pfdhps mutations A540E and A581G in Tanzania. When found together, these mutations confer high-level SP resistance (sometimes referred to as 'super-resistance'), which is associated with loss in protective efficacy of SP-IPTp. METHODS: DNA samples were extracted from malaria-positive blood samples on filter paper, used malaria rapid diagnostic test strips and whole blood collected from eight sites in seven administrative regions of Tanzania. PCR-RFLP and SSOP-ELISA techniques were used to genotype the A540E and A581G Pfdhps. Data were analysed using SPSS version 18 while Chi square and/or Fischer Exact tests were used to compare prevalence between regions. RESULTS: A high inter-regional variation of Pfdhps-540E was observed (χ(2) = 76.8, p < 0.001). High inter-regional variation of 581G was observed (FE = 85.3, p < 0.001). Both Tanga and Kagera were found to have the highest levels of SP resistance. A high prevalence of Pfdhps-581G was observed in Tanga (56.6 %) in northeastern Tanzania and in Kagera (20.4 %) in northwestern Tanzania and the 540-581 EG haplotype was found at 54.5 and 19.4 %, respectively. Pfdhps-581G was not detected in Pwani and Lindi regions located south of Tanga region. CONCLUSIONS: Selection of SP super-resistant Pfdhps A581G is highest in northern Tanzania. Variation in distribution of SP resistance is observed across the country: northeastern Tanga region and northwestern Kagera region have highest prevalence of SP super-resistance markers, while in Pwani and Lindi in the southeast the prevalence of super-resistance was zero. More studies should be conducted to understand the factors underlying the remarkable heterogeneity in SP resistance in the country.