RESUMO
Metal detoxification is essential for bacteria's survival in adverse environments and their pathogenesis in hosts. Understanding the underlying mechanisms is crucial for devising antibacterial treatments. In the Gram-negative bacterium Escherichia coli, membrane-bound sensor CusS and its response regulator CusR together regulate the transcription of the cus operon that plays important roles in cells' resistance to copper/silver, and they belong to the two-component systems (TCSs) that are ubiquitous across various organisms and regulate diverse cellular functions. In vitro protein reconstitution and associated biochemical/physical studies have provided significant insights into the functions and mechanisms of CusS-CusR and related TCSs. Such studies are challenging regarding multidomain membrane proteins like CusS and also lack the physiological environment, particularly the native spatial context of proteins inside a cell. Here, we use stroboscopic single-molecule imaging and tracking to probe the dynamic behaviors of both CusS and CusR in live cells, in combination with protein- or residue-specific genetic manipulations. We find that copper stress leads to a cellular protein concentration increase and a concurrent mobilization of CusS out of clustered states in the membrane. We show that the mobilized CusS has significant interactions with CusR for signal transduction and that CusS's affinity toward CusR switches on upon sensing copper at the interfacial metal-binding sites in CusS's periplasmic sensor domains, prior to ATP binding and autophosphorylation at CusS's cytoplasmic kinase domain(s). The observed CusS mobilization upon stimulation and its surprisingly early interaction with CusR likely ensure an efficient signal transduction by providing proper conformation and avoiding futile cross talks.
Assuntos
Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Histidina Quinase/metabolismo , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Citoplasma/metabolismo , Escherichia coli/genética , Histidina Quinase/química , Histidina Quinase/genética , Inativação Metabólica , Periplasma/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Imagem Individual de MoléculaRESUMO
Physical forces have a profound effect on growth, morphology, locomotion, and survival of organisms. At the level of individual cells, the role of mechanical forces is well recognized in eukaryotic physiology, but much less is known about prokaryotic organisms. Recent findings suggest an effect of physical forces on bacterial shape, cell division, motility, virulence, and biofilm initiation, but it remains unclear how mechanical forces applied to a bacterium are translated at the molecular level. In Gram-negative bacteria, multicomponent protein complexes can form rigid links across the cell envelope and are therefore subject to physical forces experienced by the cell. Here we manipulate tensile and shear mechanical stress in the bacterial cell envelope and use single-molecule tracking to show that octahedral shear (but not hydrostatic) stress within the cell envelope promotes disassembly of the tripartite efflux complex CusCBA, a system used by Escherichia coli to resist copper and silver toxicity. By promoting disassembly of this protein complex, mechanical forces within the cell envelope make the bacteria more susceptible to metal toxicity. These findings demonstrate that mechanical forces can inhibit the function of cell envelope protein assemblies in bacteria and suggest the possibility that other multicomponent, transenvelope efflux complexes may be sensitive to mechanical forces including complexes involved in antibiotic resistance, cell division, and translocation of outer membrane components. By modulating the function of proteins within the cell envelope, mechanical stress has the potential to regulate multiple processes required for bacterial survival and growth.
Assuntos
Fenômenos Biomecânicos/fisiologia , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Estresse Mecânico , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Difusão , Escherichia coli/química , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Imagem Individual de MoléculaRESUMO
In bacteria, trigger factor (TF) is the molecular chaperone that interacts with the ribosome to assist the folding of nascent polypeptides. Studies in vitro have provided insights into the function and mechanism of TF. Much is to be elucidated, however, about how TF functions in vivo. Here, we use single-molecule tracking, in combination with genetic manipulations, to study the dynamics and function of TF in living E. coli cells. We find that TF, besides interacting with the 70S ribosome, may also bind to ribosomal subunits and form TF-polypeptide complexes that may include DnaK/DnaJ proteins. The TF-70S ribosome interactions are highly dynamic inside cells, with an average residence time of â¼0.2 s. Our results confirm that the signal recognition particle weakens TF's interaction with the 70S ribosome, and further identify that this weakening mainly results from a change in TF's binding to the 70S ribosome, rather than its unbinding. Moreover, using photoconvertible bimolecular fluorescence complementation, we selectively probe TF2 dimers in the cell and show that TF2 does not bind to the 70S ribosome but is involved in the post-translational interactions with polypeptides. These findings contribute to the fundamental understanding of molecular chaperones in assisting protein folding in living cells.
Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Chaperonas Moleculares/metabolismo , Peptídeos/metabolismo , Peptidilprolil Isomerase/química , Ligação Proteica , Biossíntese de Proteínas , Dobramento de Proteína , Ribossomos/metabolismoRESUMO
Heme-copper oxidases (HCOs) are key enzymes in prokaryotes and eukaryotes for energy production during aerobic respiration. They catalyze the reduction of the terminal electron acceptor, oxygen, and utilize the Gibbs free energy to transport protons across a membrane to generate a proton (ΔpH) and electrochemical gradient termed proton motive force (PMF), which provides the driving force for the adenosine triphosphate (ATP) synthesis. Excessive PMF is known to limit the turnover of HCOs, but the molecular mechanism of this regulatory feedback remains relatively unexplored. Here we present a single-enzyme study that reveals that cytochrome bo3 from Escherichia coli, an HCO closely homologous to Complex IV in human mitochondria, can enter a rare, long-lifetime leak state during which proton flow is reversed. The probability of entering the leak state is increased at higher ΔpH. By rapidly dissipating the PMF, we propose that this leak state may enable cytochrome bo3, and possibly other HCOs, to maintain a suitable ΔpH under extreme redox conditions.
RESUMO
ZnO nanoparticles (NPs) are prone to dissolution, and uncertainty remains whether biological/cellular responses to ZnO NPs are solely due to the release of Zn(2+) or whether the NPs themselves have additional toxic effects. We address this by establishing ZnO NP solubility in dispersion media (Dulbecco's modified Eagle's medium, DMEM) held under conditions identical to those employed for cell culture (37 °C, 5% CO2, and pH 7.68) and by systematic comparison of cell-NP interaction for three different ZnO NP preparations. For NPs at concentrations up to 5.5 µg ZnO/mL, dissolution is complete (with the majority of the soluble zinc complexed to dissolved ligands in the medium), taking ca. 1 h for uncoated and ca. 6 h for polymer coated ones. Above 5.5 µg/mL, the results are consistent with the formation of zinc carbonate, keeping the solubilized zinc fixed to 67 µM of which only 0.45 µM is as free Zn(2+), i.e., not complexed to dissolved ligands. At these relatively high concentrations, NPs with an aliphatic polyether-coating show slower dissolution (i.e., slower free Zn(2+) release) and reprecipitation kinetics compared to those of uncoated NPs, requiring more than 48 h to reach thermodynamic equilibrium. Cytotoxicity (MTT) and DNA damage (Comet) assay dose-response curves for three epithelial cell lines suggest that dissolution and reprecipitation dominate for uncoated ZnO NPs. Transmission electron microscopy combined with the monitoring of intracellular Zn(2+) concentrations and ZnO-NP interactions with model lipid membranes indicate that an aliphatic polyether coat on ZnO NPs increases cellular uptake, enhancing toxicity by enabling intracellular dissolution and release of Zn(2+). Similarly, we demonstrate that needle-like NP morphologies enhance toxicity by apparently frustrating cellular uptake. To limit toxicity, ZnO NPs with nonacicular morphologies and coatings that only weakly interact with cellular membranes are recommended.
Assuntos
Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Cinética , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Solubilidade , Óxido de Zinco/químicaRESUMO
Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.
Assuntos
Quitinases , Proteína 1 Semelhante à Quitinase-3 , Glicoproteínas , Ensaios de Triagem em Larga Escala , Heparitina SulfatoRESUMO
This article employed the fused deposition modelling (FDM) method and gas-pressure infiltration to manufacture alumina/AlSi12 composites. Porous ceramic skeletons were prepared by FDM 3D printing of two different alumina powder-filed filaments. The organic component was removed using a combination of solvent and heat debinding, and the materials were then sintered at 1500 °C to complete the process. Thermogravimetric tests and DTA analysis were performed to develop an appropriate degradation and sintering program. Manufactured skeletons were subjected to microstructure analysis, porosity analysis, and bending test. The sintering process produced porous alumina ceramic samples with no residual carbon content. Open porosity could occur due to the binder's degradation. Liquid metal was infiltrated into the ceramic, efficiently filling any open pores and forming a three-dimensional network of the aluminium phase. The microstructure and characteristics of the fabricated materials were investigated using high-resolution scanning electron microscopy, computer tomography, hardness testing, and bending strength testing. The developed composite materials are characterized by the required structure-low porosity and homogenous distribution of the reinforcing phase, better mechanical properties than their matrix and more than twice as high hardness. Hence, the developed innovative technology of their manufacturing can be used in practice.
RESUMO
Mechanisms for cellular uptake of nanoparticles have important implications for nanoparticulate drug delivery and toxicity. We have explored the mechanism of uptake of amorphous silica nanoparticles of 14 nm diameter, which agglomerate in culture medium to hydrodynamic diameters around 500 nm. In HT29, HaCat and A549 cells, cytotoxicity was observed at nanoparticle concentrations ≥ 1 µg/ml, but DNA damage was evident at 0.1 µg/ml and above. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy confirmed entry of the silica particles into A549 cells exposed to 10 µg/ml of nanoparticles. The particles were observed in the cytoplasm but not within membrane bound vesicles or in the nucleus. TEM of cells exposed to nanoparticles at 4°C for 30 minutes showed particles enter cells when activity is low, suggesting a passive mode of entry. Plasma lipid membrane models identified physical interactions between the membrane and the silica NPs. Quartz crystal microbalance experiments on tethered bilayer lipid membrane systems show that the nanoparticles strongly bind to lipid membranes, forming an adherent monolayer on the membrane. Leakage assays on large unilamellar vesicles (400 nm diameter) indicate that binding of the silica NPs transiently disrupts the vesicles which rapidly self-seal. We suggest that an adhesive interaction between silica nanoparticles and lipid membranes could cause passive cellular uptake of the particles.
Assuntos
Células HT29/metabolismo , Queratinócitos/metabolismo , Mutagênicos/metabolismo , Nanopartículas/administração & dosagem , Dióxido de Silício/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Dano ao DNA , Células HT29/efeitos dos fármacos , Células HT29/ultraestrutura , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/ultraestrutura , Neoplasias Pulmonares , Microscopia Eletrônica de Transmissão , Mutagênicos/toxicidade , Nanopartículas/ultraestrutura , Espectrometria por Raios XRESUMO
Silica nanoparticles were applied as the carrier of chloramphenicol (2,2-dichloro-N-[(1R,2R)-1,3-dihydroxy-1-(4-nitrophenyl)propan-2-yl]acetamide), and were loaded in a 1% carbopol-based gel (poly(acrylic acid)), which allowed obtainment of an upgraded drug form. The samples of silica materials were obtained by means of modified Stöber synthesis, and their morphological properties were analyzed using Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) method, elemental analysis (EA), thermogravimetric analysis (TGA), analysis of the specific surface properties, X-ray diffraction study (XRD), scanning electron microscope (SEM), and dynamic light scattering (DLS) methods, which permitted the selection of the drug carrier. The two obtained silica carriers were coated with chloramphenicol and loaded into 1% carbopol gel. The release studies were then performed. The release results were evaluated using mathematical models as well as model-independent analysis. It was found that the modification of the synthesis of the silica by the sol-gel method to form a product coated with chloramphenicol and further grinding of the silica material influenced the release of the active substance, thus allowing the modification of its pharmaceutical availability. The change in the parameters of silica synthesis influenced the structure and morphological properties of the obtained silica carrier. The grinding process determined the way of adsorption of the active substance on its surface. The studies showed that the proper choice of silica carrier has a considerable effect on the release profile of the prepared hydrogel formulations.
RESUMO
Introduction: Sarcoidosis is a systemic disease of unknown etiology characterized by granuloma formation in the affected tissues. The pathologically activated macrophages are causatively implicated in disease pathogenesis and play important role in granuloma formation. Chitotriosidase (CHIT1), macrophage-derived protein, is upregulated in sarcoidosis and its levels correlate with disease severity implicating CHIT1 in pathology. Methods: CHIT1 was evaluated in serum and bronchial mucosa and mediastinal lymph nodes specimens from sarcoidosis patients. The therapeutic efficacy of OATD-01 was assessed ex vivo on human bronchoalveolar lavage fluid (BALF) macrophages and in vivo in the murine models of granulomatous inflammation. Results: CHIT1 activity was significantly upregulated in serum from sarcoidosis patients. CHIT1 expression was restricted to granulomas and localized in macrophages. Ex vivo OATD-01 inhibited pro-inflammatory mediators' production (CCL4, IL-15) by lung macrophages. In the acute model of granulomatous inflammation in mice, OATD-01 showed anti-inflammatory effects reducing the percentage of neutrophils and CCL4 concentration in BALF. In the chronic model, inhibition of CHIT1 led to a decrease in the number of organized lung granulomas and the expression of sarcoidosis-associated genes. Conclusion: In summary, CHIT1 activity was increased in sarcoidosis patients and OATD-01, a first-in-class CHIT1 inhibitor, demonstrated efficacy in murine models of granulomatous inflammation providing a proof-of-concept for its clinical evaluation in sarcoidosis.
RESUMO
A combined fluorescence and electrochemical method is described that is used to simultaneously monitor the type-1 copper oxidation state and the nitrite turnover rate of a nitrite reductase (NiR) from Alcaligenes faecalis S-6. The catalytic activity of NiR is measured electrochemically by exploiting a direct electron transfer to fluorescently labeled enzyme molecules immobilized on modified gold electrodes, whereas the redox state of the type-1 copper site is determined from fluorescence intensity changes caused by Förster resonance energy transfer (FRET) between a fluorophore attached to NiR and its type-1 copper site. The homotrimeric structure of the enzyme is reflected in heterogeneous interfacial electron-transfer kinetics with two monomers having a 25-fold slower kinetics than the third monomer. The intramolecular electron-transfer rate between the type-1 and type-2 copper site changes at high nitrite concentration (≥520 µM), resulting in an inhibition effect at low pH and a catalytic gain in enzyme activity at high pH. We propose that the intramolecular rate is significantly reduced in turnover conditions compared to the enzyme at rest, with an exception at low pH/nitrite conditions. This effect is attributed to slower reduction rate of type-2 copper center due to a rate-limiting protonation step of residues in the enzyme's active site, gating the intramolecular electron transfer.
Assuntos
Nitrito Redutases/metabolismo , Alcaligenes faecalis/enzimologia , Eletroquímica , Eletrodos , Transporte de Elétrons , Fluorescência , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Nitrito Redutases/química , Propriedades de SuperfícieRESUMO
Membrane proteins are key components of the plasma membrane and are responsible for control of chemical ionic gradients, metabolite and nutrient transfer, and signal transduction between the interior of cells and the external environment. Of the genes in the human genome, 30% code for membrane proteins (Krogh et al. J. Mol. Biol.2001, 305, 567). Furthermore, many FDA-approved drugs target such proteins (Overington et al. Nat. Rev. Drug Discovery 2006, 5, 993). However, the structure-function relationships of these are notably sparse because of difficulties in their purification and handling outside of their membranous environment. Methods that permit the manipulation of membrane components while they are still in the membrane would find widespread application in separation, purification, and eventual structure-function determination of these species (Poo et al. Nature 1977, 265, 602). Here we show that asymmetrically patterned supported lipid bilayers in combination with AC electric fields can lead to efficient manipulation of charged components. We demonstrate the concentration and trapping of such components through the use of a "nested trap" and show that this method is capable of yielding an approximately 30-fold increase in the average protein concentration. Upon removal of the field, the material remains trapped for several hours as a result of topographically restricted diffusion. Our results indicate that this method can be used for concentrating and trapping charged membrane components while they are still within their membranous environment. We anticipate that our approach could find widespread application in the manipulation and study of membrane proteins.
Assuntos
Proteínas de Membrana/isolamento & purificação , Membrana Celular/química , Eletricidade , Bicamadas Lipídicas/químicaRESUMO
Commonly used humidity sensors are based on metal oxides, polymers or carbon. Their sensing accuracy often deteriorates with time, especially when exposed to higher temperatures or very high humidity. An alternative solution based on the utilization of Portland cement-based mortars containing in-situ grown carbon nanofibers (CNFs) was evaluated in this study. The relationship between the electrical resistivity, CNF content and humidity were determined. The highest sensitivity was observed for samples containing 10 wt.% of the nanomodified cement which corresponded to 0.27 wt.% of CNFs. The highest calculated sensitivity was approximately 0.01024 per 1% change in relative humidity (RH). The measured electrical resistivity is a linear function of the RH in the humidity range between 11 and 97%. The percolation threshold value was estimated to be at around 7 wt.% of the nanomodified cement, corresponding to ~ 0.19 wt.% of CNFs.
RESUMO
Carbon nanofibers (CNFs) were directly synthesized on Portland cement particles by chemical vapor deposition. The so-produced cements contained between 2.51-2.71 wt% of CNFs; depending on the production batch. Several mortar mixes containing between 0 and 10 wt% of the modified cement were produced and the electrical properties at various ages and the load sensing capabilities determined. The percolation threshold related to the electrical conductivity was detected and corresponded to the amount of the present CNFs, 0.271, 0.189, 0.135 and 0.108 wt%. The observed threshold depended on the degree of hydration of the Portland cement. The studied mortars showed a strong piezoresistive response to the applied compressive load reaching a 17% change of the electrical resistivity at an applied load of 3.5 MPa and 90% at 26 MPa. This initial study showed that the studied material is potentially suitable for future development of novel fully integrated monitoring systems for concrete structures.
RESUMO
Single-molecule tracking (SMT) of fluorescently tagged cytoplasmic proteins can provide valuable information on the underlying biological processes in living cells via subsequent analysis of the displacement distributions; however, the confinement effect originated from the small size of a bacterial cell skews the protein's displacement distribution and complicates the quantification of the intrinsic diffusive behaviors. Using the inverse transformation method, we convert the skewed displacement distribution (for both 2D and 3D imaging conditions) back to that in free space for systems containing one or multiple (non)interconverting Brownian diffusion states, from which we can reliably extract the number of diffusion states as well as their intrinsic diffusion coefficients and respective fractional populations. We further demonstrate a successful application to experimental SMT data of a transcription factor in living E. coli cells. This work allows a direct quantitative connection between cytoplasmic SMT data with diffusion theory for analyzing molecular diffusive behavior in live bacteria.
Assuntos
Bactérias/metabolismo , Citoplasma/metabolismo , DifusãoRESUMO
Binding and unbinding of transcription regulators at operator sites constitute a primary mechanism for gene regulation. While many cellular factors are known to regulate their binding, little is known on how cells can modulate their unbinding for regulation. Using nanometer-precision single-molecule tracking, we study the unbinding kinetics from DNA of two metal-sensing transcription regulators in living Escherichia coli cells. We find that they show unusual concentration-dependent unbinding kinetics from chromosomal recognition sites in both their apo and holo forms. Unexpectedly, their unbinding kinetics further varies with the extent of chromosome condensation, and more surprisingly, varies in opposite ways for their apo-repressor versus holo-activator forms. These findings suggest likely broadly relevant mechanisms for facile switching between transcription activation and deactivation in vivo and in coordinating transcription regulation of resistance genes with the cell cycle.
Assuntos
DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Cromossomos Bacterianos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Conformação de Ácido Nucleico , Ligação Proteica , Transcrição GênicaRESUMO
BACKGROUND: CT-guided needle biopsy of lung nodules requires breath holding during needle placement, and is thus inapplicable to patients with difficulty in holding breath. METHODS: A robotic needle biopsy technique is introduced, adapting to the patient respiratory pattern and using a robot manipulator to drive the needle towards a moving lung nodule. Based on the nodule respiratory motion model, needle placement is planned to follow an optimal timing and path, and is triggered based on the respiratory phase tracking. An experimental system has been created to study robotic needle placement. RESULTS: Preliminary phantom tests were conducted based on three representative clinically-collected lung nodule motion paths, using an 18-gauge coaxial needle set. 300 needle paths were implemented. Robotic needle driving was accomplished within 0.4 s (a typical respiratory phase), and resulted in a needle placement accuracy of 0.5 mm with a standard deviation about 0.1 mm over the non-resistance paths. CONCLUSION: The proposed robotic needle placement technique is promising for accurately biopsying lung nodules under respiratory motion and those with very small sizes.
Assuntos
Biópsia por Agulha/instrumentação , Biópsia Guiada por Imagem/instrumentação , Robótica/instrumentação , Nódulo Pulmonar Solitário/diagnóstico , Biópsia por Agulha/estatística & dados numéricos , Estudos de Viabilidade , Humanos , Biópsia Guiada por Imagem/estatística & dados numéricos , Imageamento Tridimensional , Movimento , Imagens de Fantasmas , Respiração , Robótica/estatística & dados numéricos , Software , Tomografia Computadorizada por Raios XRESUMO
Recently, studies have been reported in which fluorescently labeled redox proteins have been studied with a combination of spectroscopy and electrochemistry. In order to understand the effect of the dye on the protein-electrode interaction, voltammetry and surface analysis have been performed on protein films of dye-labeled and unlabeled forms of a cysteine-surface variant (L93C) and the wild type (wt) of the copper containing nitrite reductase (NiR) from Alcaligenes faecalis S6. The protein has been adsorbed onto gold electrodes modified with self-assembled monolayers (SAMs) made up of 6-mercaptohexanol (6-OH) and mixtures of various octanethiols. Electrochemical and surface-analytical techniques were utilized to explore the influence of the SAM composition on wt and L93C NiR enzyme activity and the orientation of the enzyme molecules with respect to the electrode/SAM. The unlabeled L93C NiR enzyme is only electroactive on mixed SAMs composed of positive 8-aminooctanethiol (8-NH(2)) and 8-mercaptooctanol (8-OH). No enzymatic activity is observed on SAMs consisting of pure 6-OH, 8-OH, or pure 8-NH(2). Modification of L93C NiR with the ATTO 565 dye resulted in enzymatic activity on SAMs of 6-OH, but not on SAMs of 8-OH. Quartz crystal microbalance with dissipation measurements show that well-ordered and rigid protein films (single orientation of the protein) are formed when NiR is electroactive. By contrast, electrode-NiR combinations for which no electrochemical activity is observed still have NiR adsorbed on the surfaces, but a less-structured and water-rich film is formed. For the unlabeled L93C NiR, bilayer formation is observed, suggesting that the Cys93 residue is orientated away from the surface and able to form disulfide bridges to a second layer of L93C NiR. The results indicate that interfacial electron transfer is only possible if the negatively charged surface patch surrounding the electron-entry site of NiR is directed toward the electrode. This can be achieved either by introducing positive charges in the SAM or, when the SAM does not carry a charge, by labeling the enzyme with an ATTO 565 dye, which has some hydrophobic character, close to the electron entry site of the NiR.